Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2009; 55(1): 19-26


SECOND ANOXIA-REOXYGENATION DOES NOT CAUSE THE APOPTOTIC CELL DEATH OF NEONATAL CARDIOMYOCYTES: POSSIBLE ROLE OF CHANGES OF mRNA EXPRESSION OF CYTOPROTECTIVE GENES

O.V. Surova, V.E. Dosenko, V.S. Nagibin, L.V. Tumanovskaya, A.A. Moybenko

    O.O.Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz55.01.019

Abstract

The cells death and genes expression in neonatal cardiomyocytes culture at two anoxia-reoxygenation modeling were investigated. The primary culture of neonatal cardiomyocytes was under­gone 30 min of anoxia followed by 24 h (A-R1) and the second anoxia-reoxygenation – 30 min and 60 min respectively (A-R2). The percentages of living, necrotic, apoptotic and autophagic cells were determined by staining with bis-benzimide, propidium iodide and monodansylcadaverine. Anoxia-reoxygenation sig­nificantly influenced the ratio of living, necrotic, apoptotic and autophagic cells both at its first A-R1 and second A-R2 epi­sodes. It was shown that the main mechanism of cell death after the both periods of anoxia-reoxygenation is necrosis. The changes of mRNA levels of genes of heat shock proteins HSP70 and HSP90, antiapoptotic protein Bcl2 and key regulator of au-tophagy FRAP in cardiomyocytes culture were established. The data obtained allow to make suggestion that in 24 h after the first episode of anoxia-reoxygenation A-R1 the overexpression of heat shock proteins starts the cascade of reactions that causes the necrotic cell death prevalent and the blocking of apoptotic program at second anoxia-reoxygenation A-R2.

Keywords: gene expression

References

  1. Tumanovska LV, Nagibin BC, Dosenko VE, Moybenko OO Ultrastructural changes in isolated cardiomyocytes during stress modeling of the endoplasmic reticulum. Fiziol. Zh. 2008. 54, N 3. p. 10-21.
  2. Bott-Flbgel L., Weig H.J., Uhlein H. et al. Quantitative analysis of apoptotic markers in human end-stage heart failure . Eur. J. Heart Fail. 2008. 10(2) P. 129-132. CrossRef PubMed
  3. Deng X., Gao F., May W.S.Jr. Bcl2 retards G1. S cell cycle transition by regulating intracellular ROS . Blood. 2003. 102, N 9. P. 3179-3185. CrossRef PubMed
  4. Dosenko V.E., Nagibin V.S., Tumanovskaya L.V. et al. Proteasomal proteolysis in anoxia-reoxygenation, pre-conditioning and postconditioning of isolated cardiomyo-cytes . Pathophysiology. 2006. 2. P. 119-125. CrossRef PubMed
  5. Dosenko V.E., Nagibin V.S., Tumanovskaya L.V. et al. Postconditioning prevents apoptotic, necrotic and au­tophagic cardiomyocyte cell death in culture. Fiziol. Zh. 2005. 51. P. 12-17.
  6. Dosenko V.E., Nagibin V.S., Tumanovska L.V. et al. Protective effect of autophagy in anoxia-reoxygenation of isolated cardiomyocyte? . Autophagy. 2006. 2(4). P. 305-306. CrossRef PubMed
  7. Hartmann A., Troadec J. D., Hunot S. Caspase-8 is an effector in apoptotic death of dopaminergic neurons in Parkinson's disease, but pathway inhibition results in neuronal necrosis . J. Neurosc. 2001. 21, N 7. P 2247-2255 CrossRef PubMed PubMedCentral
  8. Khoynezhad A., Jalali Z., Tortolani A.J. A synopsis of research in cardiac apoptosis and its application to congestive heart failure . Heart Inst. J. 2007. 34(3). P. 352-359.
  9. Li J., Ni M., Lee B. et al. The unfolded protein response regulator GRP78. BiP is required for endoplasmic reticulum integrity and stress-induced autophagy in mammalian cells . Cell Death Differ. 2008. 15(9) P. 1460-1471. CrossRef PubMed PubMedCentral
  10. Li H.L., Karwatowska-Prokopczuk E., Mutomba M. et al. Pharmacology of caspase inhibitors in rabbit cardiomyocytes subjected to metabolic inhibition and recovery . Antioxid. Redox. Signal. 2001. 3, N 1. P. 113-123. CrossRef PubMed
  11. Lin L., Kim S.C., Wang Y. et al. HSP60 in heart failure: abnormal distribution and role in cardiac myocyte apoptosis . Amer. J. Physiol. Heart Circulat. Physiol. 2007. 293(4). P. 2238-2247. CrossRef PubMed
  12. Liu X.H., Zhang Z.Y., Sun S. et al. Ischemic postcon­ditioning protects myocardium from ischemia. reperfusion injury through attenuating endoplasmic reticulum stress . Shock. 2008. 30(4). P. 422-427. CrossRef PubMed
  13. Los M., Mozoluk M., Ferrari D. et al. Activation and caspase-mediated inhibition of PARP: a molecular switch between fibroblast necrosis and apoptosis in death receptor signaling . Mol. Biol. Cell. 2002. 13. P.978-988. CrossRef PubMed PubMedCentral
  14. Naka Y., Sawa Y, Nishimura M. et al. Participation of caspase-3-like protease in necrotic cell death of myo­cardium during ischemia-reperfusion injury in rat hearts . Circulat. J. 2003. 67, N 3. P. 248-252. CrossRef PubMed
  15. Pankuweit S., Jobmann M., Crombach M. et al., Cell death in inflammatory heart muscle diseases-apoptosis or necrosis? . Herz. 1999. 24, N 3. P. 211-218. CrossRef PubMed
  16. Reinecke H., Zhang M., Bartosek T.et al. Survival, in­tegration, and differentiation of cardiomyocyte grafts . Circulation. 1999. 100. P. 193-202. CrossRef PubMed
  17. Sablina A.A., Budanov A.V., Ilyinskaya G.V. et al. The antioxidant function of the p53 tumor suppressor . Nat. Med. 2005. 11, N 12. P. 1306-1313. CrossRef PubMed PubMedCentral
  18. Satoh M., Shimoda Y, Akatsu T. et al. Elevated circu­lating levels of heat shock protein 70 are related to sys­temic inflammatory reaction through monocyte Toll sig­nal in patients with heart failure after acute myocardial infarction. . Eur. J. Heart Fail. 2006. 8(8). P. 810--815. CrossRef PubMed
  19. Scarabelli T., Knight R., Anastasis Stephanou et al. Clinical Implications of Apoptosis in Ischemic Myocar­dium . Current Probl. Cardiol. 2006. 31. P. 181-264. CrossRef PubMed
  20. Sharma H.S., Stahl J., Weisensee D. et al. Cytopro-tective mechanisms in cultured cardiomyocytes . Mol. Cell Biochem. 1996. 160 P. 217-224. CrossRef
  21. Song H., Zhang Z., Wang L. Small interference RNA against PTP-1B reduces hypoxia. reoxygenation induced apoptosis of rat cardiomyocytes . Apoptosis. 2008. 13(3). P. 383-393. CrossRef PubMed
  22. Thuerauf D.J., Marcinko M., Gude N. et al. Activation of the unfolded protein response in infarcted mouse heart and hypoxic cultured cardiac myocytes . Circulat. Res. 2006. 99(3). P. 275-282. CrossRef PubMed
  23. Tu I.H., Yen H.T., Cheng H.W. et al. Baicalein protects chicken embryonic cardiomyocyte against hypoxia-re-oxygenation injury via mu- and delta- but not kappa-opioid receptor signaling . Eur. J. Pharmacol. 2008. 588(2-3). P. 251-258. CrossRef PubMed
  24. Wajant H., Scheurich P. Tumor necrosis factor receptor-associated factor (TRAF) 2 and its role in TNF signal­ing . Intern. J. Biochem. and Cell Biol. 2001. 33. P. 19-32. CrossRef

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2021.