Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2008; 54(1): 45-53


Nadph-diaphorase activityand neurovascular coupling in the rat cerebral cortex

O.V. Vlasenko, V.A. Maisky, A.V. Maznychenko, A.I. Pilyavskii.

    Він. нац. мед. ун-т ім. М.І. Пирогова;Ін-т фізіології ім. О.О. Богомольця НАН України, Київ


Abstract

The distribution of NADPH-diaphorase-reactive (NADPH- dr) neurons and neuronal processes in the cerebral cortex and basal forebrain and their association with parenchymal vessels were studied in normal adult rats using NADPH-d histochemical protocol. The intensely stained cortical interneurons and reactive subcortically originating afferents, and stained microvessels were examined through a light microscope at law (x250) and high (x630) magnifications. NADPH-dr interneu- rons were concentrated in layers 2–6 of the M1 and M2 areas. However, clear predominance in their concentration (14 ± 0.8 P<0.05 per section) was found in layer 6. A mean number of labeled neurons in auditory (AuV), granular and agranular (GI, AIP) areas of the insular cortex was calculated to reach 12.3±0.7, 18.5 ±1.0 and 23.3±1.7 units per section, respectively (P<0,05). The distinct apposition of labelled neurons to intracortical vessels was found in the M1, M2. The order of frequency of neurovascular coupling in different zones of the cerebral cortex was as following sequence: AuV (31.2 %, n=1040) > GI (18.0 %, n=640) > S1 (13.3 %, n=720) > M1 (6.3 %, n=1360). A large number of structural associations between labeled cells and vessels in the temporal and insular cortex indi- cate that NADPH-d-reactive interneurons can contribute to regulation of the cerebral regional blood flow in these areas.

References

  1. Довгань О.В., Майський В.О., Пілявський О.І., Мазниченко А.В. Дослідження НАДФН-діафоразо- реактивних нейронів та їх взаємозв’язок із мікросу- динами в базальних лімбічних структурах перед- нього мозку і гіпоталамусі // Фізіол. журн. – 2007. – 53, №.5 – С. 35–46.
  2. Пилявский А.И., Власенко О.В., Мазниченко А.В., Майский В.А. Экспрессия c-fos в островках Калеха и соседних ядрах основания головного мозга после yсталостной стимуляции дорсальных мышц шеи у крыс // Нейронауки. – 2007. – 2. – С. 9–15.
  3. Cauli B., Tong X.K., Rancillac A. et al. Cortical GABA interneurons in neurovascular coupling: relays for sub- cortical vasoactive pathways // J. Neurosci. – 2004. – 24. – P. 8940–8949.
  4. Garbossa D., Fontanella M., Tomasi S. et al. Differen- tial distribution of NADPH-diaphorase histochemis- try in human cerebral cortex // Brain. Res. – 2005. – 1034. – P. 1–10.
  5. Girouard H., Iadecola C. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease // J. Appl. Physiol. – 2006. – 100. – P. 328–335.
  6. Gritti I., Henny P., Galloni F. et al. Stereological esti- mates of the basal forebrain cell population in the rat, including neurons containing choline acetyltransferase, glutamic acid decarboxylase or phosphate-activated glutaminase and colocalizing vesicular glutamate trans- porters // Neuroscience. – 2006. – 143. – 1051–1064.
  7. Gu Q. Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity // Neuro- science. – 2002. – 111. – P. 815–835.
  8. Hamel E. Cholinergic modulation of the cortical microvas- cular bed // Prog. Brain Res. – 2004. – 145. – Р. 171–178.
  9. 9. Hamel E. Perivascular nerves and the regulation of cere- brovascular tone // J. Appl. Physiol. – 2006. –100. – Р. 1059–1064.
  10. 10. Iadecola C. Regulation of the cerebral microcirculation during neural activity: is nitric oxide the missing link? // Trends Neurosci. – 1993. – 16. – P. 206–214.
  11. Iadecola C. Intrinsic signals and functional brain map- ping: caution, blood vessels at work //Cereb. Cortex. – 2002. – 12. – Р. 223–224. NADPH-diaphorase activity and neurovascular
  12. ISSN 0201-8489 Фізіол. журн., 2008, Т. 54, № 1 53
  13. Iadecola C., Beitz A.J., Renno W. et al. Nitric oxide synthase-containing neural processes on large cerebral arteries and cerebral microvessels // Brain. Res. – 1993 – 606 – P. 148–155.
  14. Kiss J.P., Vizi E.S. Nitric oxide: a novel link between synaptic and nonsynaptic transmission // Trends Neurosci. – 2001. – 24. – P. 211–215.
  15. Korotkov A., Radovanovic S., Ljubisavljevic M. et al. Comparison of brain activation after sustained non-fa- tiguing and fatiguing muscle contraction: a positron emission tomography study // Exp. Brain. Res. – 2005. – 163. – P. 65–74.
  16. Kowada K., Kawarada K., Matsumoto N. Conditioning stimulation of the central amygdaloid nucleus inhibits the jaw-opening reflex in the cat // Jаp. J. Physiol. – 1992. – 42. – P. 443–458.
  17. Lovick T.A., Brown L.A., Key B.J. Neuronal activity- related coupling in cortical arterioles: involvement of astrocyte-derived factors // Exp. Physiol. – 2005. – 90. – Р. 131–140.
  18. Lysakowski A., Wainer B.H., Bruce G., Hersh L.B. An atlas of the regional and laminar distribution of choline acetyltransferase immunoreactivity in rat cerebral cortex // Neuroscience. – 1989. – 28. – P. 291–336.
  19. Maisky V.A., Oleshko N.N., Bazilyuk O.V. et al. Fos and nitric oxide synthase in rat brain with chronic mesostriatal dopamine deficiency: effects of nitroglyc- erin and hypoxia // Parkinsonism Relat. Disord. – 2002. – 8. – P. 261–270.
  20. 19. Marino J., Cudeiro J. How does the brain wake up? The nitric oxide blow // Rev. Neurol. – 2006. – 42. – P. 535–541.
  21. 20. Maznychenko A.V., Pilyavskii A.I., Kostyukov A.I. et al. Coupling of c-fos expression in the spinal cord and amygdala induced by dorsal neck muscles fatigue // Histochem. Cell Biol. – 2007 – 128. – Р. 85–90.
  22. Mesulam M.M., Hersh L.B., Mash D.C., Geula C. Differential cholinergic innervation within functional subdivisions of the human cerebral cortex: a choline acetyltransferase study // J. Comp. Neurol. – 1992. – 318. – Р. 316–328.
  23. Mesulam M.-M., Mufson E.J., Levey A.I., Wainer B.H. Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey // J. Comp. Neurol. – 1983. –214. – P. 170–197.
  24. Mesulam M.-M., Mufson E.J., Wainer B.H., Levey A.I. Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1–Ch6) // Neuroscience. – 1983. – 10. – P. 1185–1201.
  25. Pasqualotto B.A., Vincent S.R. Galanin and NADPH- diaphorase coexistence in cholinergic neurons of the rat basal forebrain // Brain. Res. – 1991. – 551. – P. 78–86.
  26. Paxinos G., Watson C. The Rat Brain in Stereotaxic Coordinates. – San Diego: Acad. Press, 1997.
  27. Pilyavskii A.I., Maisky V.A., Kalezic I. et al. c-fos ex- pression and NADPH-diaphorase reactivity in spinal neurons after fatiguing stimulation of hindlimb muscles in the rat // Brain Res. – 2001. – 923. – P. 91–102.
  28. Sato A., Sato Y. Regulation of regional cerebral blood flow by cholinergic fibers originating in the basal fore- brain // Neurosci. Res. – 1992. – 14. – Р. 242–274.
  29. Sugaya K., McKinney M. Nitric oxide synthase gene expression in cholinergic neurons in the rat brain exam- ined by combined immunocytochemistry and in situ hybridization histochemistry // Brain Res. Mol. Brain Res. – 1994. – 23. – P. 111–125.
  30. 29. Tong X.-K., Hamel E. Regional cholinergic denerva- tion of cortical microvessels and nitric oxide synthase- containing neurons in Alzheimer’s disease // Neuro- science. – 1999. – 92. – P. 163–175.
  31. 30. Tong X.-K., Hamel E. Basal forebrain nitric oxide syn- thase (NOS)-containing neurons project to microvessels and NOS neurons in the rat neocortex: cellular basis for cortical blood flow regulation // Eur. J. Neurosci. – 2000. – 12. – Р. 2769–2780.
  32. Vaucher E., Hamel E. Cholinergic basal forebrain neurons project to cortical microvessels in the rat: elec- tron microscopic study with anterogradely transported Phaseolus vulgaris leucoagglutinin and choline acetyltransferase immunocytochemistry // J. Neurosci. – 1995. – 15. – P. 7427–7441.
  33. Vaucher E., Tong X.-K., Cholet N. et al. GABA neurons provide a rich input to microvessels but not nitric ox- ide neurons in the rat cerebral cortex: a means for di- rect regulation of local cerebral blood flow // J. Comp. Neurol. – 2000. – 421. – 161–171.
  34. Vincent S.R., Kimura H. Histochemical mapping of nitric oxide synthase in the rat brain // Neuroscience. – 1992. – 46. – Р. 755–784.
  35. Vlasenko O.V., Dovgan A.V., Maisky V.A. et al. NADPH- diaphorase reactivity and neurovascular coupling in the basal forebrain and motor cortex // Neirofiziologiya/ Neurophysiology. – 2007. – 4–5. – P. 405–407

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2019.