Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2008; 54(1): 35-44


Spatial distribution of synapticvesicles in ca1 hippocampal synapses after brief anoxia-hypoglycemia and tetaniclong-term potentiation

I.V.lushnikova, I.R.nikonenko, A.G.nikonenko, G.G.skibo.

    Ін-т фізіології ім.О.О. Богомольця НАН України, Київ


Abstract

Prolonged activation of excitatory glutamatergic synapses causes modifications in their functioning and ultrastructural organization. While postsynaptic activity-induced changes have been relatively well studied, the data on spatial dynamics of synaptic vesicles (SV) under conditions of synaptic activa- tion are still lacking. Using organotypic hippocampal slice cultures as a model system and electron microscopy as a technique, we analyzed changes in SV numbers and their spatial distribution in spine synapses of hippocampal CA1 area. Two approaches were used to activate synapses: a protocol of brief oxygen-glucose deprivation known to induce so-called anoxia-hypoglycemic long-term potentiation (LTP), as well as high frequency stimu- lation of Schaffer collaterals inducing LTP of evoked postsyn- aptic potentials in CA1 synapses. Observations during the first hour after stimulation (30 and 60 min time-points) have shown that in both cases active functioning of synapses leaded to de- crease in the total SV number as well as to depletion of the readily releasable SV pool. Both experimental protocols caused a decrease in spatial clustering of SV which was more pro- nounced after anoxia-hypoglycemic LTP. Possible mechanisms and functional consequences of these phenomena are discussed

References

  1. СПИСОК ЛІТЕРАТУРИ
  2. Applegate M.D., Kerr D.S., Landfield PW. Redistribution of synaptic vesicles during long term potentia- tion in the hippocampus // Brain. Res. – 1987. – 401, №2. – P.401–406.
  3. Bolay H., Gursoy-Ozdemir Y., Sara Y. et al. Persistent defect in transmitter release and synapsin phosphoryla- tion in cerebral cortex after transient moderate ischemic injury // Stroke. – 2002. – 33, №5. – Р.1369–1375.
  4. Buchs P.A., Stoppini L., Parducz A. et al. A new cy- tochemical method for the ultrastructural localization of calcium in the central nervous system // J.Neuro- sci.Methods. – 1994. – 54, №1. – Р.83–93.
  5. Castillo P.E., Schoch S., Schmitz F. et al. RIM1alpha is required for presynaptic long-term potentiation // Nature. – 2002. – 415, №6869. – Р.327–330.
  6. Dobrunz L.E., Stevens C.F. Heterogeneity of release probability, facilitation, and depletion at central syn- apses // Neuron. – 1997. – 18, №6. – Р.995–1008.
  7. Emptage N.J., Reid C.A., Fine A. et al. Optical quantal analysis reveals a presynaptic component of LTP at hippocampal Schaffer-associational synapses // Ibid. – 2003. – 38, №5. –Р.797–804.
  8. Genoud S., Pralong W., Riederer B.M. et al. Activity- dependent phosphorylation of SNAP-25 in hippoc- ampal organotypic cultures // J.Neurochem. – 1999. – 72, № . – Р.1699–1706.
  9. Hammond C., Crepel V., Gozlan H. et al. Anoxic LTP sheds light on the multiple facets of NMDA receptors // Trends Neurosci. – 1994. – 17, №11. – Р.497–503.
  10. 9. Hou Q., Gao X., Zhang X. et al. SNAP-25 in hippoc- ampal CA1 region is involved in memory consolidation // Eur.J.Neurosci. – 2004. – 20, №6. – Р.1593–1603.
  11. 10. Hsu K.S., Huang C.C. Characterization of the anoxia- induced long-term synaptic potentiation in area CA1 of the rat hippocampus// Brit.J.Pharmacol. – 1997. – 122, №4. – P.671–681. І.В.Лушнікова, І.Р.Ніконенко, О.Г.Ніконенко, Г.Г.Скібо
  12. 44ISSN 0201-8489 Фізіол. журн., 2008, Т. 54, № 1
  13. Janz R., Sьdhof T.C., Hammer R.E. et al. Essential roles in synaptic plasticity for synaptogyrin I and synapto- physin I // Neuron. – 1999. – 24, №3. – Р.687–700.
  14. Jourdain P., Nikonenko I., Alberi S. et al. Remodeling of hippocampal synaptic networks by a brief anoxia- hypoglycemia // J.Neurosci. – 2002. – 22, №8. – Р.3108–3116.
  15. Jung Y.J., Park S.J., Park J.S. et al. Glucose/oxygen deprivation induces the alteration of synapsin I and phosphosynapsin // Brain Res. – 2004. – 996, №1. Р.47–54.
  16. Kovalenko T., Osadchenko I., Nikonenko A. et al. Is- chemia-induced modifications in hippocampal CA1 stratum radiatum excitatory synapses // Hippocam- pus. – 2006. – 16, №10. – Р.814–825.
  17. Lisman J., Raghavachari S. A unified model of the pr- esynaptic and postsynaptic changes during LTP at CA1 synapses // Sci.STKE. – 2006. – 356, re11.
  18. Lushnikova I.V., Voronin K., Malyarevskyy P.Y. et al. Morphological and functional changes in rat hippoc- ampal slice cultures after short-term oxygen-glucose deprivation // J.Cell Mol.Med. – 2004. – 8, №2. – Р.241–248.
  19. Meshul C.K., Hopkins W.F. Presynaptic ultrastruc- tural correlates of long-term potentiation in the CA1 subfield of the hippocampus // Brain Res. – 1990. – 514, №2. – Р.310–319.
  20. Nikonenko A.G., Skibo G.G. Technique to quantify local clustering of synaptic vesicles using single sec- tion data // Microsc.Res.Tech. – 2004. – 65, №6. – Р.287–291.
  21. 19. Nikonenko I., Bancila M., Bloc A. et al. Inhibition of T-type calcium channels protects neurons from delayed ischemia-induced damage // Mol.Pharmacol. – 2005. – 68, №1. – Р.84–89.
  22. 20. Nishimura H., Matsuyama T., Obata K. et al. Changes in mint1, a novel synaptic protein, after transient glo- bal ischemia in mouse hippocampus // J.Cereb.Blood Flow.Metab. – 2000. – 20, №10. – Р.1437–1445.
  23. Pozzo-Miller L.D., Gottschalk W., Zhang L. et al. Impairments in high-frequency transmission, synap- tic vesicle docking, and synaptic protein distribution in the hippocampus of BDNF knockout mice // J.Neurosci. – 1999. – 19, №12. – Р.4972–4983.
  24. Rizzoli S.O., Betz W.J. The structural organization of the readily releasable pool of synaptic vesicles // Sci- ence. – 2004. – 303, №5666. – Р.2037–2039.
  25. Ryan T.A., Ziv N.E., Smith S.J. Potentiation of evoked vesicle turnover at individually resolved synaptic boutons // Neuron. – 1996. – 17, №1. – Р.125–134.
  26. Schikorski T., Stevens C.F. Quantitative ultrastructural analysis of hippocampal excitatory synapses // J.Neurosci. – 1997. – 17, №15. – Р.5858–5867.
  27. Stoppini L., Buchs P.A., Muller D. A simple method for organotypic cultures of nervous tissue // J.Neuro- sci.Methods. – 1991. – 37, №2. – Р.173–182.
  28. Sudhof T.C. The synaptic vesicle cycle: a cascade of protein-protein interactions // Nature. – 1995. – 375, № 6533. – Р.645–653.
  29. Yokota N., Uchijima M., Nishizawa S. et al. Identifi- cation of differentially expressed genes in rat hippoc- ampus after transient global cerebral ischemia using subtractive cDNA cloning based on polymerase chain reaction // Stroke. – 2001. – 32, №1. – Р.168–174.

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2019.