Investigation of nadphdiaphoraso-reactivity and neurovascular coupling in the basal forebrain limbicstructures and hypothalamus
O.V. Dovgan., V.O. Maisky, O.I. Pilyavskii, A.V. Maznychenko
M.I. Pirogov National Medical University, VinnitsaO.O. Bogomoletz Institute of Physiology, National Academyof Sciences of Ukraine, Kyiv
Abstract
NADPH-diaphorase histochemistry was used to study the
distribution and density of labeled neurons in the limbic struc-
tures and hypothalamus in intact rat. NADPH-diaphorase
positive neurons were registered in the basal forebrain–medial
septal nucleus (MS), the nuclei of the diagonal band of Broca
(VDB, HDB), substancia innominata (SI) and the nucleus basa-
lis of Meynert (B). These areas largely overlap with the
cholinergic CH1–CH4 forebrain system of the rodent brain.
The order of density of labeled neurons in different regions of
the basal forebrain was as following sequence: HDB > VDB >
SI > B. The highest densities of the reactive neurons (>1000
labeled neurons per section 200x200 µm2) was found in the
islands of Calleja (ICjs). In the supraoptic (SO) and
paraventricular (Pa) nuclei of hypothalamus were recorded >
130 and > 100 labeled units, respectively. The lowest density
of labeled neurons was recorded within the SI–B complex: <
10 reactive units. Reactive neurons, their dendrites and axon-
like processes within the ICjs, SO, Pa, the lateral nucleus
hypothalamus (LH) often surround arterioles which traverse
the structures. We suggest that NADPH-diaphorase-reactive
(NO-generating) neurons within the ICjs and hypothalamus
are involved in regulation of the regional blood flow (RBF)
that is important to adapt the blood flow to changes in neuronal
activity of the basal forebrain structures.
References
- Власенко О.В., Майський В.О., Мазниченко А.В. та ін. Дослідження експресії c-fos і НАДФН- діафоразної активності у спинному та головному мозку при розвитку стомлення м’язів шиї у щурів // Фізіол. журн. – 2006. – 52, №6. – С. 3–14.
- Власенко О.В., Мороз В.М., Йолтухівський М.В. та ін. Активність нейронів кори та підкіркових структур мозку при підготовці та виконанні рухів // Там само. – 2006. – 52, №2. – С. 27.
- Пилявский А.И., Власенко О.В., Мазниченко А.В., Майский В.А. Экспрессия c-fos в островках Калеха и соседних ядрах основания головного мозга после усталостной стимуляции дорсальных мышц шеи у крыс // Нейронауки. – 2007. – 2. – С. 9–15.
- Carswell S. Vitamin D in the nervous system: action and therapeutic potential. – In: Feldman D., Glorieux F.H., Pike J.W., Eds. Vitamin D. – San Diego: Acad. Press, 1997. – P. 1197–1211.
- Cauli B., Tong X.K., Rancillac A. et al. Cortical GABA interneurons in neurovascular coupling: relays for sub- cortical vasoactive pathways // J. Neurosci. – 2004. – 24. – P. 8940–8949.
- Colom L.V. Septal networks: relevance to theta rhythm, epilepsy and Alzheimer’s disease // J. Neurochem. – 2006. – 96. – P. 609–623.
- Garthwaite J. Dynamics of cellular NO-cGMP signal- ing // Front. Biosci. – 2005. – 10. – P. 1868–1880.
- Gritti I., Henny P., Galloni F. et al. Stereological esti- mates of the basal forebrain cell population in the rat, including neurons containing choline acetyltransferase, glutamic acid decarboxylase or phosphate-activated glutaminase and colocalizing vesicular glutamate transporters // Neuroscience. – 2006. – 143. – P. 1051–1064.
- 9. Gu Q. Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity // Ibid. – 2002. – 111. – P. 815–835.
- 10. Guimarгes F.S., Beijamini V., Moreira F.A. et al. Role of nitric oxide in brain regions related to defensive reactions // Neurosci. Biobehav. Rev. – 2005. – 29. – P. 1313–1322.
- Kadekaro M. Nitric oxide modulation of the hypotha- lamo-neurohypophyseal system // Braz. J. Med. Biol. Res. – 2004. – 37. – Р. 441–450.
- Kohler C., Chan-Palay V. Distribution of gamma aminobutyric acid containing neurons and terminals in the septal area. An immunohistochemical study using antibodies to glutamic acid decarboxylase in the rat brain // Anat. Embryol. (Berlin.). – 1983. – 167. – P. 53–65.
- Kroncke K.D., Klotz L.O., Suschek C.V., Sies H. Comparing nitrosative versus oxidative stress toward zinc finger-dependent transcription. Unique role for NO // J. Biol. Chem. – 2002. – 277. – P. 13294–13301.
- Krukoff T.L. Central actions of nitric oxide in regulation of autonomic functions // Brain Res. Rew. – 1999. – 30. – Р. 52–65.
- Krukoff T.L., Khalili P. Stress-induced activation of nitric oxide-producing neurons in the rat brain // J. Comp. Neurol. – 1997. – 377. – Р. 509–519.
- Kuypers H.G., Maisky V.A. Retrograde axonal trans- port of horseradish peroxidase from spinal cord to brain stem cell groups in the cat // Neurosci. Lett. – 1975. – 1. – P. 9–14.
- Li D.P., Chen S.R., Pan H.L. Nitric oxide inhibits spi- nally projecting paraventricular neurons through po- tentiation of presynaptic GABA release // J. Neuro- physiol. – 2002. – 88. – P. 2664–2674.
- Lohse M.J., Forstermann U., Schmidt H.H. Pharmacol- ogy of NO: cGMP signal transduction // Naunyn Schmie- debergs Arch. Pharmacol. – 1998. – 58. – P. 111–112.
- 19. Maisky V.A., Datsenko V.V., Moibenko A.A. et al. NO-generating neurons in the medullary cardiovascu- lar centers of rodents and carnivores // Comp. Biochem. Physiol. – 2003. – 136. – Р. 605–612.
- 20. Marino J., Cudeiro J. How does the brain wake up? The nitric oxide blow // Rev. Neurol. – 2006. – 42. – P. 535–541.
- Maznychenko A.V., Pilyavskii A.I., Kostyukov A.I. et al. Coupling of c-fos expression in the spinal cord and amygdala induced by dorsal neck muscles fatigue // Histochem. Cell Biol. – 2007. – 128. – Р. 85–90.
- Maznychenko A.V., Pilyavskii A.I., Vlasenko O.V., Maisky V.A. Fatigue of the dorsal neck muscles ini- tiates c-fos expression in the rat spinal cord and hypo- thalamus // Нейрофизиология/Neurophysiology. – 2006. – 38. – P. 354–357.
- Mesulam M.-M., Geula C. Nucleus basalis (Ch4) and cortical cholinergic innervation in the human brain: observations based on the distribution of acetylcho- linesterase and choline acetyltransferase // J. Comp. Neurol. – 1988. – 275. – P. 216–240.
- Mesulam M.-M., Hersh L.B., Mash D.C., Geula C. Differential cholinergic innervation within functional subdivisions of the human cerebral cortex: a choline acetyltransferase study //Ibid. – 1992. – 318. – Р. 316–328.
- Mesulam M.-M., Mufson E.J., Levey A.I., Wainer B.H. Cholinergic innervation of cortex by the basal fore- brain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (sub- stantia innominata), and hypothalamus in the rhesus monkey // Ibid. – 1983. –214. – P. 170–197.
- Mesulam M.-M., Mufson E.J., Wainer B.H., Levey A.I. Central cholinergic pathways in the rat: an over- view based on an alternative nomenclature (Ch1–Ch6) // Neuroscience. – 1983. – 10. – P. 1185–1201.
- Meyer G., Gonzalez-Hernandez T., Galindo-Mireles D. et al. NADPH-d activity in the islands of Calleja: a regulatory system of blood flow to the ventral striatum/ pallidum? // Neuroreport. – 1994. –5. – 1281–1284.
- Millan M.J. Descending control of pain // Prog. Neurobiol. – 2002. – 66. – P. – 355–474.
- 29. Musiol I.M., Stumpf W.E., Bidmon H.J. et al. Vitamin D nuclear binding to neurons of the septal, substriatal and amygdaloid area in the Siberian hamster (Phodopus sungorus) brain // Neuroscience. – 1992. – 48. – P. 841–848.
- 30. Oleshko N.N., Maisky V.A. Topographical organization of the sources of discrete cortical projections within the striatum as determined by a retrograde fluorescence trac- ing technique in the cat // Ibid. – 1993. – 57. – P. 683–695.
- Pasqualotto B.A., Vincent S.R. Galanin and NADPH- diaphorase coexistence in cholinergic neurons of the rat basal forebrain // Brain Res. – 1991. – 551. – P. 78–86.
- Paxinos G., Watson C. The Rat Brain in Stereotaxic Coordinates. – San Diego: Acad. Press, 1997. 33. Sanes J.N., Donoghue J.P. Plasticity and primary motor cortex // Annu. Rev. Neurosci. – 2000. – 23. – Р. 393–415.
- Sato A., Sato Y. Regulation of regional cerebral blood flow by cholinergic fibers originating in the basal fore- brain // Neurosci. Res. – 1992. – 14. – Р. 242–274.
- Sawchenko P.E., Swanson L.W. The organization of fore- brain afferents to the paraventricular and supraoptic nuclei of the rat // J. Comp. Neurol. – 1983. – 218. – P. 121–144.
- Sugaya K., McKinney M. Nitric oxide synthase gene expression in cholinergic neurons in the rat brain exam- ined by combined immunocytochemistry and in situ hybridization histochemistry // Brain Res. Mol. Brain Res. – 1994. – 23. – P. 111–125.
- Tong X.K., Hamel E. Regional cholinergic denervation of cortical microvessels and nitric oxide synthase-con- taining neurons in Alzheimer’s disease // Neuroscience. – 1999. – 92. – P. 163–175.
- Tong X.K., Hamel E. Basal forebrain nitric oxide syn- thase (NOS)-containing neurons project to microvessels and NOS neurons in the rat neocortex: cellular basis for cortical blood flow regulation // Eur. J. Neurosci. – 2000. – 12. – Р. 2769–2780.
- 39. Vaucher E., Hamel E. Cholinergic basal forebrain neurons project to cortical microvessels in the rat: elec- tron microscopic study with anterogradely transported Phaseolus vulgaris leucoagglutinin and choline acetyltransferase immunocytochemistry // J. Neurosci. – 1995. – 15. – P. 7427–7441.
- 40. Vaucher E., Tong X.K., Cholet N. et al. GABA neurons provide a rich input to microvessels but not nitric oxide neurons in the rat cerebral cortex: a means for direct regulation of local cerebral blood flow // J. Comp. Neurol. – 2000. – 421. – 161–171.
- Vincent S.R., Kimura H. Histochemical mapping of nitric oxide synthase in the rat brain // Neuroscience. – 1992. – 46. – Р. 755–784.
|