Identification of Е-4031-sensitive potassium current component (IKr)in cardiodifferentiated murine P19 embrionic carcinoma cells
A.V. Sotkis, Lazarenko R.M., Boldyrev O.I., Voitychuk O.I., Dosenko V.Je., Shuba Ia.M.
О.О. Bogomolets Institute of Physiology, National Academyof Sciences of Ukraine, Kyiv
Abstract
Pluripotent mouse P19 embryonic carcinoma cells represent a
convenient in vitro model for studying various aspects of cardiac
differentiation. Here by using whole-cell patch-clamp recording
we have identified the rapid delayed rectifier K+ current, IKr, in
P19 cell induced to differentiate into cardiac phenotype by
DMSO (1%). Cardiac differentiation was confirmed by the
appearance of spontaneously beating cells, their morphological
features, ultrastructural clusterization of mitochondria around
contraction elements, expression of cardiac actin mRNAs and
06ISSN 0201-8489 Фізіол. журн., 2006, Т. 52, № 1
MLC2v, and by the presence of inward sodium and calcium
currents. IKr was isolated based on the sensitivity to the spe-
cific blocker, Е-4031, which at concentration of 1 мM blocked
more than 50% of the total outward K+ current. However, in
contrast to IKr in native cardiac myocytes and in heterologous
systems expressing IKr-carrying ERG1 potassium channel,
Е-4031-sensitive K+ current in cardiac-like P19 cells lacked
characteristic inward rectification, suggesting specific regulation
and/or subunit composition of endogenous ERG1-based
channel in these cells. Establishing the reason(s) for this phe-
nomenon will advance the understanding of the mechanisms of
IKr-channel rectification. Cardiac-differentiated P19 cells might
also be useful for studying pharmacological modulation of IKr,
which is recognized target for cardiotoxic side effects of
numerous drugs
References
- Banach K., Halbach P.Hu., Hescheler J., Egert U. De- velopment of electrical activity in cardiac myocyte aggregates derived from mouse embryonic stem cells // Amer. J. Physiol. Heart. Circulat. Physiol. – 2003. –284. – P. H2114–H2123.
- Boheler K.R., Czyz J., Tweedie D. et al. Differentiation of pluripotent embryonic stem cells into cardiomyo-cytes // Circulat. Res. – 2002. – 91. – P. 189–201.
- Goffart S., Kleist-Retzow J.C., Wiesner R.J. Regulation of mitochondrial proliferation in the heart: power-plant failure contributes to cardiac failure in hypertrophy //Cardiovasc. Res. – 2004. – 64. – P. 198–207.
- Kamino K., Hirota A., Fujii S. Localization of pacemak- ing activity in early embryonic heart monitored usingvoltage-sensitive dye // Nature. – 1981. – 290. –P. 595–597.
- Kehat I., Gepstein L. Human embryonic stem cells can differentiate into myocytes with structural and func- tional properties of cardiomyocytes // J. Clin. Invest. –2001. – 108. – P. 407–414.
- Krugliakov P.V., Sokolova I.B., Amineva K. et al. Mesenchymal stem cell transplantation for myocardial reparation of rat experimental heart failure // Tsitologiia. – 2004. – 46. – P. 1043–1054.
- Laflamme M.A., Gold J., Xu C. et al. Formation of human myocardium in the rat heart from human embryonic stem cells // Amer. J. Pathol. – 2005. –167(3). – P. 663–671.
- Mangoni M.E., Couette B., Bourinet E. et al. Functional role of L-type Cav1.3 Ca2-channels in cardiac pacemaker activity // PNAS. – 2003. – 100. – P. 5543–5548.
- 9. Mery A., Aimond F., Menard C., Mikoshiba K. et al. Initiation of embryonic cardiac pacemaker activity by inositol 1,4,5-trisphosphate–dependent calcium signaling // Molec. Biol. Cell. – 2005. – 16. – P. 2414–2423.
- 10. Mitcheson J.S., Chen J., Lin M. et al. A structural basis for drug-induced long QT syndrome // Proc. Natl.Acad. Sci. USA. – 2000. – 97. – P. 12329–12333.
- Mitcheson J.S., Hancox J.C. An investigation of the role played by the E-4031-sensitive (rapid delayed rectifier) potassium current in isolated rabbit atrioventricular nodal and ventricular myocytes // Pflug.Arch – Eur. J. Physiol. – 1999. – 438. – P. 843–850.
- Morissette P., Hreiche R., Turgeon J. Drug-induced long QT syndrome and torsade de pointes // Can. J.Cardiol. – 2005. – 21. – P. 857–864.
- Nagaya N., Kangawa K., Itoh T. et al. Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy // Circulation. – 2005. – 112. – P. 1128–1135.
- Nuss H.B., Marban E. Electrophysiological properties of neonatal mouse cardiac myocytes in primary culture // J. Physiol. – 1994. – 479. – P. 265–279.
- Paquin J., Danalache B.A., Jankowski M. et al. Oxytocin induces differentiation of P-19 embryonic stem cells to cardiomyocytes // PNAS. – 2002. – 99. –P. 9550–9555.
- Pond A.L., Nerbonne J.M. ERG proteins and func- tional cardiac I(Kr) channels in rat, mouse, and human heart // Trends Cardiovasc. Med. – 2001. – 11. –P. 286–294.
- Sanguinetti M.C., Jiang C., Curran M.E., Keating M.T.A mechanistic link between an inherited and an ac-quired cardiac arrhythmia: HERG encodes the IKr po-tassium channel // Cell. – 1995. – 81. – P. 299–307.
- Sanguinetti M.C., Jurkiewicz N.K. Delayed rectifieroutward K+ current is composed of two currents in guinea pig atrial cells // Amer. J. Physiol. – 1991. –260. – P. H393–H399.
- 19. Satin J., Kehat I., Caspi O. et al. Mechanisms of spon- taneous excitability in human stem cell derived cardiomyocytes // J. Physiol. – 2004. – 559, 2. –P. 479–496.
- 20. Sauer H., Theben T., Hescheler J. et al. Characteristics of calcium sparks in cardiomyocytes derived from embryonic stem cells // Amer. J. Physiol. Heart.Circulat. Physiol. – 2001. – 281. – P. H411–H421.
- Shuba Y.M., Degtiar V.E., Osipenko V.N. et al. Test-osterone-mediated modulation of HERG blockade by proarrhythmic agents // Biochem. Pharmacol. – 2001. –62. – P. 41–49.
- Smits A.M., van Vliet P., Hassink R.J. et al. The role of stem cells in cardiac regeneration // J. Cell. Mol.Med. – 2005. – 9. – P. 25–36.
- Stieber J., Herrmann S., Feil S. et al . The hyperpolar- ization-activated channel HCN4 is required for the gen-eration of pacemaker action potentials in the embryonic heart // PNAS. – 2003. – 100. – P. 15235–15240.
- Tamargo J., Caballero R., Gomez R. et al. Pharmacol-ogy of cardiac potassium channels // Cardiovasc. Res. –2004. – 62. – P. 9–33.Ідентифікація Е-4031-чутливого компонента
- ISSN 0201-8489 Фізіол. журн., 2006, Т. 52, № 1 61
- Van der Heyden M.A.G., Defize L.F.K. T wenty one years of P19 cells: what an embryonal carcinoma cell line taught us about cardiomyocyte differentiation //Ibid. – 2003. – 58. – P. 292–302.
- Van der Heyden M.A.G., van Kempen M.J.A., Tsuji Y., Rook M.B. et al. P19 embryonal carcinoma cells: asuitable model system for cardiac electrophysiological differentiation at the molecular and functional level //Ibid. – 2003. – 58. – P. 410–422.
- Viatchenko-Karpinski S., Fleischmann K., Sauer L.H. et al. Intracellular Ca2+ oscillations drive spontaneouscontractions in cardiomyocytes during early develop-ment // Proc. Natl. Acad. Sci. USA. – 1999. – 96. –P. 8259–8264.
- White S.M., Claycomb W.C. Embryonic stem cells form an organized, functional cardiac conduction sys-tem in vitro // Amer. J. Physiol. Heart. Circulat. Physiol. –2005. – 288. – P. H670–H679.
- 29. Woodcock E.A., Matkovich S.J. Cardiomyocytes struc-ture, function and associated pathologies // Int. J. Biochem. Cell Biol. – 2005. – 37. – P. 1746–1751.
- 30. Yang H., Tweedie D., Wang S. et al . The ryanodine receptor modulates the spontaneous beating rate of cardiomyocytes during development // PNAS. – 2002. –99. – P. 9225–9230.
- Yang T., Snyders D.J., Roden D.M. Rapid inactivation determines the rectification and [K+]o dependence of the rapid component of the delayed rectifier K+ current incardiac cells // Circulat. Res. – 1997. – 80. – P. 782–789.
- Zhang Y.M., Hartzell C., Narlow M., Dudley S.C. Stem cell–derived cardiomyocytes demonstrate arrhythmic potential // Circulation. – 2002. – 106. –P. 1294–1299.
- Zhang Y.M., Shang L., Hartzell C. et al. Characterization and regulation of T-type Ca2-channels in embryonic stem cell-derived cardiomyocytes // Amer. J. Physiol. Heart. Circulat. Physiol. – 2003. – 285. – P. H2770–H2779.
|