Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2005; 51(4): 3-12


Influence of the intermittenthypoxia training on the sensitivityof phenylarsineoxide-induced mito-chohdrial permeability transitionpore opening in rat heart

G.L. Vavilova, T.V. Serebrovskaya, O.V. Rudyk,M.V. Belikova, E.E. Kolesnikova, T.V. Kukoba,V.F. Sagach.

    О.О. Bogomolets Institute of Physiology, National Academyof Sciences of Ukraine, Kyiv


Abstract

On the mitochondria isolated from the heart tissue of adult rats we studied the sensitivity of mitochondrial permeability transition pore (MPTP) opening to its in- ductor – phenylarsine oxide (PAO) after mitochondrial swelling, registered by spectrophotometric technique at л=520 nm. In adult rat under influence of two modes of normobaric intermittent hypoxic training (IHT): i) softer but prolonged one induced by breathing in normobaric chamber with 11% O2 gas mixture, 15 minuets sessions with 15 minuets rest intervals, 5 times daily (first mode) and ii) more severe but shorter one induced by breathing with 8 % O2 gas mixture (second mode) were used. The intensity of lipid peroxidation and anti- oxidant defense mechanisms in rat organism were esti- mated before and after IHT by measuring malon dialdehyde (MDA) content and enzymatic activity of superoxide dismutase (SOD) and catalase (CAT) in the blood and the liver. It has been shown that IHT in the first mode didn’t essentially influence both on PAO – induced, cyclosporin A – sensitive mitochondrial swell- ing and indexes of lipid peroxidation as well as the SOD and CAT enzymatic activity. It was established that IHT in the second mode caused pronounced increase in MDA content both in the blood and the liver by 67 % and 32% respectively; considerable augmentation of SOD activity in this tissues (by 49% and 32% res- pectively) and CAT activity (by 18% and 43% respectively). Moreover, in forty five days the activity of SOD exceeded its initial level in three times in both the blood and the liver. It has been established that IHT in the second mode provoke to twice decrease in PAO- induced mitochondrial swelling as compared with mito- chondria of the control group, and even in forty five days after IHT stopping the protective effect on mito- chondrial PTP opening was well-preserved. These ef- fects were completely abolished in the presence of an inhibitor – cyclosporin A (10-5 mol/l) that demonstrated mitochondrial swelling to be due to the mitochondrial PTP opening. Our experiments showed that the influen- ce of IHT in more severe mode decreased the sensitivi- ty of mitochondria to the PAO in rat heart mitochondria. Thus resistance of the mitochondrial membrane to an inductor of PTP opening – PAO increase under the influence of IHT in the second mode.

References

  1. Ельчанинова С.А., Смагина И.В., Кореняк Н.А.,Варшавский Б.Я. Влияние интервальной гипок-сической тренировки на процессы перекисногоокисления липидов и активность антиоксидантныхферментов // Физиология человека. – 2003. – 29 №3. – С. 72–75.
  2. Королюк М.А., Иванова Л.И., Майорова И.Г.Метод определения активности каталазы // Лаб.дело. –1988. – 1. – С. 16–19.3. Кургалюк Н.М., Серебровська Т.В.. Вплив інтер-вальних гіпоксичних тренувань на антиоксидантнусистему і перекисне окиснення ліпідів при дії гостроїгіпоксії і донора оксиду азоту// Мед. хімія. – 2001. –
  3. 3, № 1. – С. 69–71.
  4. Малышев И.Ю., Манухина Е.Б. Стресс, адаптацияи оксид азота //Биохимия. – 1998. – 63, вып. 7. –С. 992–1006.
  5. Семенов В.Л., Ярош А.М. Влияние гипоксии наокислительное фосфорилирование и перекисноеокисление липидов митохондрий печени крыс привоспалении легких // Укр. биохим. журн. – 1991. –63, №2. – С. 95–101.
  6. Cеребровська Т.В., Кургалюк Н.М., Носар В.І.,Колєс-нікова Є.Е. Вплив інтервальних гіпоксичнихподразнень та екзогенного оксиду азоту на процесиенергозабезпечення та ліпопероксидації у печінціщурів за умов гострої гіпоксії// Фізіол. журн. –2001. – 47, №1. – С. 85–92.
  7. Сагач В.Ф., Вавілова Г.Л., Рудик О.В., СтрутинськаН.А. Вивільнення неідентифікованих речовинмітохондріального походження – показник відкриттямітохондріальної пори серця щурів // Там само. –2003. – 49, №5. – С. 3–12.
  8. Рудик О.В., Вавілова Г.Л., Струтинська Н.А. та ін.Чутливість феніларсиноксид-індукованого від-криття мітохондріальної пори в серці старих щурівта за умов впливу на них інтервальних гіпоксичнихтренувань // Там само. – 2004. – 50, №5. – С. 29–37.
  9. 9. Чевари С., Чаба И., Секей Й. Роль суперок-сиддисмутазы в окислительных процессах клетки иметод определения ее в биологических материалах //Лаб. дело. – 1985. – № 11. – С. 678–681.
  10. 10. Argaud L., Gateau-Roesch O., Muntean D. et al. Spe-cific inhibition of the mitochondrial permeability tran-sition prevents lethal reperfusion injury // J. Mol. Cell.Cardiol. – 2005. – №38. – Р. 367–74.
  11. Beguin P.C., Joyeux-Faure M., Godin-Ributo D. Acuteintermittent hypoxia improves rat myocardiumtоlerance to ischemia // J. Appl. Physiol. – 2005. – вдруці.
  12. Chen C.H., Chern C.L., Lin C.C. et al. Involvement ofreactive oxygen species, but not mitochondrial perme-ability transition in the apoptotic induction of humanSK-Hep-1 hepatoma cells by shikonin// Planta Med. –2003. – 69 (12). – P. 1119–1124.
  13. Crompton M., Barksly E., Jonson N., Capano M.Mitochondrial intermembrane junctional complexes andtheir involvement in cell death // Biochemie. – 2002. –84. – P. 143–152.
  14. Da Lozzo E.J., Oliveira M.B., Carnieri E.G. Citrinin-induced mitochondrial permeability transition // J.Biochem. Mol. Toxicol. – 1998. – 12(5). – P. 291–297.
  15. Galindo M.F., Jordan J., Gonzalez-Garcia C., Cena V.Reactive oxygen species induce swelling and cyto-chrome c release but not transmembrane depolariza-tion in isolated rat brain mitochondria// Brit. J.Pharmacol. – 2003. –139(4). – P. 797–804.
  16. Halestrap A.P., Clarke S.J., Javadov S.A. Mitochon-drial permeability transition pore opening during myo-cardial reperfusion – a target for cardioprotection //Cardiovasc. Res. – 2004. – 61. – P. 372–385.
  17. Hausenloy D.J., Yellon D.M., Mani-Babu S., Duchen M.R.Preconditioning protects by inhibiting the mitochondrialpermeability transition // Amer. J. Physiol. Heart. CirculatPhysiol. – 2004 – 287(2). – P. H841–H849.
  18. Jordan R.A., Schenkmann J.B. Relationship betweenmalonildialdehyde production and arachodinateconsumption during NADPH-supported microsomallipid peroxidation. – Biochem. Pharmacol. – 1982. –31. – P. 1390–1400.
  19. 19. Kowaltowski A.J., Castilho R.F., Grijalba M.T. et al.Effect of inorganic phosphate concentration on thenature of inner mitochondrial membrane alterationsmediated by Ca2+ ions. A proposed model for phos-phate-stimulated lipid peroxidation// J. Biol. Chem. –1996. – 9; 271(6). – P. 2929–2934.
  20. 20. Leeuwenburgh C., Phaneuf S. Cytochrome c releasefrom mitochondria in the aging hear: a possible mecha-nism for apoptosis with age // Amer. J. Physiol. Reg.Int. Comp. Physiol. – 2002. – 282. – P. R423–R430.
  21. Negrelo Newton A.P., Cadena S.M., Merlin Rocha M.E.et al. New data on biological effects of chlorhexidine:Fe2+ induced lipid peroxidation and mitochondrialpermeability transition // Toxicol. Lett. – 2004. –151(3). –P. 407–416.
  22. Nishikimi M., Appaji N., Yagi K. The occurrence ofsuperoxide anion in the reaction of reduced phenazinemethosulfate and molecular oxygen // Biochem. andBiophys. Res.Commun. – 1972. – 46(2). – P. 849–854.
  23. Park T.H., Kwon O.S., Park S.Y. et al. N-methylatedbeta-carbolines protect PC12 cells from cytotoxic ef-fect of MPP+ by attenuation of mitochondrial membranepermeability change// Neurosci. Res. – 2003. – 46(3). –P. 349–358.
  24. Prabhakar N.R., Kumar G.K. Oxidative stress in thesystemic and cellular responses to intermittent hy-poxia // Biol. Chem. – 2004. – 385, №3–4. – Р. 217–221.
  25. Sharp F. R., Ran R., Lu A. et al. Hypoxic Precondi-tioning Protects against Ischemic Brain Injury// J. Amer.Sci. Exp. Neur. Therap. – 2004. – 1, №1. – P. 26–35.
  26. Shen W., Hintze T., Wolin M. Nitric oxide. An impor-tant signaling mechanism between vascular endothe-lium and parenchymal cells in the regulation of oxy-gen consumption // Circulation. – 1995. – 92. –P. 3505–3512.
  27. Sun Y. Free radicals, antioxidant enzymes, and carcino-genesis // Free Rad. Biol. Med. – 1990. – 8. – P. 583–599.
  28. Zorov D.B., Filburn C.R., Klotz L.O. et al. Reactiveoxygen species (ROS)-induced ROS release: a newphenomenon accompanying induction of the mitochon-drial permeability transition in cardiac myocytes// J.Exp. Med. – 2000. – 192(7). – P. 1001–1014.
  29. 29. Vanden Hoek T.L., Becker L.B., Shao Z. et al.Reactive oxygen species released from mitochon-dria during brief hypoxia induce preconditioning incardiomyocytes // J. Biol. Chem. – 1998. – 273(29). –P. 18092–18098.
  30. 30. Vannucci R.C., Towfighi J., Vannucci S.J. Hypoxicpreconditioning and hypoxic-ischemic brain damage inthe immature rat: pathologic and metabolic correlates // J. Neurochem. – 1998. – 71(3). – P.1215–1220.
  31. Xu M., Wang Y., Hirai K. et al. Calcium precondition-ing inhibits mitochondrial permeability transition andapoptosis // Amer. J. Physiol. Heart. Circulat. Physiol. –2001. – 280. – P. H899–H908.
  32. Weiss J.N., Korge P., Honda H.M., Ping P. Role ofmitochondrial permeability transition in myocardial

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2018.