|
|
|
|
|
|
Transformation of electrical activityin the myelinated nerve fibres ofamphibia by 4-aminopyridine
I.V. Kuznetzova, D.A. Evstigneev, N.V. Gluhova
Abstract
Using the extracellular recording we studied the effect of 4-
aminopyridine (4-AP), a potassium channel blocker on the
electrical activity of the myelinated nerve fibres of amphibia
Rana ridibunda Pallas. Two main types of the reaction on 4-
AP were established: extension of the action potential and
multi-spike response. In some cases the nerve fibres with
multi-spike response generated spontaneous activity without
stimulation in the form of bursts of action potentials. During
repetitive stimulation 4-AP decreased after-depolarization (at
the beginning of the stimulation), the posttetanic after-depo-
larization and the development of posttetanic after-hyperpolar-
ization. Using the paired stimulation it was established that the
spike and after-depolarization of the second action potential
depended on the size of after-depolarization after the first action
potential. The effects of 4-AP were strongly time-dependent.
References
- Вергун О.В., Крончева С.Н., Валкина О.Н. 4-амино-пиридин увеличивает следовые потенциалы ивызывает спонтанную активность одиночныхмиелинизированных нервных волокон // Биол.мембраны. – 1995. – 12, № 1. – С. 69–72.
- Каталымов Л.Л. Особенности следовой деполяриза-ции нерва и одиночного нервного волокна лягушки // Нейрофизиология. – 1974. – 6, № 10. – С. 532–541.
- Chiu S., Ritchie J. Evidence for the presence of potas-sium channels in the internode of frog myelinated nervefibres // J. Physiol. – 1982. – 322. – P. 485–501.
- David G., Modney B., Scappaticci K.A. et al. Electri-cal and morphological factors influencing the depolar-izing after-potential in rat and lizard myelinated axons// Ibid. – 1995. – 489, № 1. – P. 141–157.
- Dubois J.M. Evidence for existence of three types ofpotassium channels in the frog Ranvier node membrane//Ibid. – 1981. – 318. – P. 279–295.
- Dubois J.M. Potassium current in the frog node of Ranvier// Prog. Biophys. Molec. Biol. – 1983. – 42. – P. 1–20.
- Grissmer S. Properties of potassium and sodium channelsin frog internode // J. Physiol. – 1986. – 381. – P. 119–134.
- Honmou O., Utzschneider D.A., Rizzo M.A. et al.Delayed depolarization and slow sodium currents incutaneous afferents // J. Neurophysiol. – 1994. – 71,№ 5. – P. 1627–1637.
- 9. Kocsis J.D., Bowe C.M., Waxman S.G. Different ef-fects of 4-aminopyridine on sensory and motor fibers:pathogenesis of paresthesias // Neurology. – 1986. –36. – P. 117–120.
- 10. Kocsis J.D., Waxman S.G. Ionic channel organizationof normal and regenerating mammalian axons // Progr.Brain Res. – 1987. – 71. – P. 89–101.
- Pelhate M., Hue B., Chanelet J. Effects de la 4-aminopyridine sur le systeme nerveux d’un insecte: lablatte (Periplaneta americana L.) // C. R. Seances Soc.Biol. – 1972. – 166. – P. 1598–1600.
- Pelhate M., Pichon Y. Selective inhibition of potas-sium current in the giant axon of the cockroach // J.Physiol. – 1974. – 242. – P. 90–91.
- Poulter M.O., Padjen A.L. Different voltage-depen-dent potassium conductances regulate action potentialrepolarization and excitability in frog myelinated axon// Neuroscience. – 1995. – 68. – P. 497–504.
- Ulbricht W., Wagner H.H. Block of potassium channelsof the nodal membrane by 4-aminopyridine and itspartial removal on depolarization // Pflьg. Archiv. –1976. – 367. – P. 77–87.
- Yeh J.Z., Oxford G.S., Wu C.H., Narahashi T. Interac-tions of aminopyridines with potassium channels of squidaxon membranes // Biophysical. J. – 1976. – 16. – P. 77–81.
|
|
|
|
|
|
|
© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.
|
|