Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2004; 50(6): 32-42


Influence ofintermittent hypoxic training on adaptation to load hypoxia in rats

B.L.Gavenauskas, I.M.Mankovskaya, V.I.Nosar, A.I.Nazarenko, L.V.Bratus

    Bogomoletz Institute of Physiology National Academy ofSciences of Ukraine.



Abstract

The aim of this study was to investigate physical endurance, maximal oxygen uptake, oxygen partial pressure, and pH in blood and skeletal muscle as well as the muscle metabolic parameters (lactate and pyruvate concentration, lactate/pyruvate and NAD/NADH ratios, succinate dehydrogenase activity, ADP-stimulated mitochondrial respiration) under various regimen of combination of endurance training with intermittent hypoxic training (IHT) in adult Wistar rats. It was shown that physical endurance, maximal oxygen uptake, and muscle PO2 (PmO2) were maximally increased in those animals who simultaneously underwent endurance training and IHT. The same animals demonstrated the minimal decrease in PmO2, blood and muscle pH under testing intensive physical workload. The latter led to the lesser shifts in metabolic parameters in the muscle of rats adapted both to IHT and endurance training than in rats adapted to endurance training only. The combined effects of IHT and adaptation to load hypoxia resulted in an increase of the role of NADH . oxidation pathway in the mitochondrial energy production.

References

  1. Бабаскин П.П. Метод определения пировиноград- ной кислоты //Лаб. дело. – 1976. – №8. – C. 497.
  2. Березовский В.А. Напряжение кислорода в тканях животных и человека. – К.: Наук. думка, 1975. – 277 с.
  3. Ещенко Н.Д., Вольский Г.Г. Определение количества янтарной кислоты и активности сукцинатдегидро- геназы: Методы биохимических исследований. – Л.: Изд-во Ленингр. ун-та, 1982. – С. 207–212.
  4. Колчинская А.З., Цыганова Т.Н., Остапенко Л.А. Нормобарическая интервальная гипоксическая тренировка в медицине и спорте. – М.: Медицина, 2003. – 407 с.
  5. Колчинская А.З., Хацуков Б.Х., Закусило М.П. Кислородная недостаточность, деструктивное и конструктивное действие. – Нальчик: Изд-во КБНЦ РАН, 1999. – 208 с.
  6. Кондрашова М.Н. Взаимодействие процессов переаминирования и окисления карбоновых кислот при разных функциональных состояниях тканей // Биохимия. – 1991. – 19, №3. – С. 388–405.
  7. Лукьянова Л.Д. Биоэнергетическая гипоксия: понятие, механизмы и способы коррекции // Бюл. эксперим. биологии и медицины. – 1997.– 124, №9. – С. 244–253.
  8. Маньковская И.Н., Филиппов М.М. Влияние гипок- сии различного происхождения на кислородный режим мышечной ткани и механизмы его регуляции // Физиол. журн. – 1988. – 34, №2. – С. 56–63.
  9. 9. Радзиевский П.А. ИГТ в спорте высших достиже- ний. – В кн.: Авто-матизированный анализ эффек- тивности использования адаптации к гипоксии в медицине и спорте. – М. – Нальчик: Изд-во КБНЦ РАН, 2001. – С. 58–87.
  10. 10. Филиппов М.М. Процесс массопереноса респира- торных газов при мышечной деятельности. Степени гипоксии нагрузки. – В кн.: Вторичная тканевая гипоксия. – К.: Наук. думка, 1983. – С. 197–216.
  11. Bergmeyer H. U. L-(+)-Lactate. Determination with LDH, GPT and NAD // Methods of Enzymatic Analysis. – New York. – 1974. – P.1475.
  12. Brooks G. A., White T.P. Determination of metabolic and heart rate responses of rats to treadmill exercise // J. Appl. Physiol. – 1978. – 45, №6. – P.1009–1015.
  13. Brooks G. A., Wolfel E. E., Butterfield G. E. et al. Poor relationship between arterial [lactate] and leg net release during exercise at 4,300 m altitude // Amer. J. Physiol. – 1998. – 275, №4. – P. R 1192–R 1201.
  14. Burelle Y., Hochachka P. W. Endurance training induces muscle-specific changes in mitochondrial function in skinned muscle fibers // J. Appl. Physiol. – 2002. – 92. – P. 2429–2438.
  15. Сhance B., Williams G. The respiratory chain and oxi- dative phosphorylation // Adv. Enzymol. – 1956. – 17. – P. 65–134.
  16. Connett R. J., Honig C. R., Gayeski T. E. J., Brooks G. A. Defining hypoxia: a systems view of VO2, gly- colysis, energetics and intracellular РO2 // J. Appl. Physiol. – 1990. – 68. – P. 833–842.
  17. Estabrook R. W. Mitochondrial Respiratory Control and the Polarographic Measurment of ADP: O Ratios // Methods Enzymol. – 1967. – 10. – P. 41–47.
  18. Gore C.J., Hahn A.G. et al. Live high: train low in- creases muscle buffer capacity and submaximal cycling efficiency // Acta Physiol. Scand. – 2001. – 173. – P. 275–286.
  19. 19. Green H., Jones J. S., Ball–Burnett M., Farrance B., Ranney D. Adaptations in muscle metabolism to pro- longed exercise and training // J. Appl. Physiol. –1995. – 78. – P. 138–145.
  20. 20. Hermansen L., Osnes J–B. Blood and muscle pH after maximal exercise in man // Ibid. – 1972. – 32, № 3. – P. 1562–1572.
  21. Hoppeler H., Vogt M. Muscle tissue adaptations to hypoxia // J. Exp. Biol. – 2001. – 204, №18. – P. 3133–3146.
  22. Katz A., Sahlin K. Regulation of lactic acid production during exercise // J. Appl. Physiol. – 1988. – 65. – P. 509–518.
  23. Kay L., Nicolay K., Wieringa B. et al. Direct evi- dence for the control of mitochondrial respiration by mitochondrial creatine kinase in oxidative muscle cells in situ // J. Biol. Chem. – 2000. – 275. – P. 6937–6944.
  24. Laterveer F.D., Nicolay K., Gellerich FN. Experimen- tal evidence for dynamic compartmentation of ADP at the mitochondrial periphery: coupling of mitochon- drial adenylate kinase and mitochondrial hexokinase with oxidative phosphorylation under conditions mimicking the intracellular colloid osmotic pressure // Моl. Cell Biochem. – 1997. – 174. – P. 43–51.
  25. Lowry O., Rosenbrough N., Farr F. et al. Protein measurements with the Folin protein reagent // J. Biol. Chem. – 1951. – 193, №1. – P. 265–275.
  26. Lyabakh K., Mankovskaya I. Oxygen transport to skel- etal muscle working at VO2max in acute hypoxia: theoretical predictions // Comp. Biochem. Physiol. – 2002. – Pt A. – 132. – P. 53 – 60.
  27. Powell F.L., Garcia N. Physiological effects of inter- mittent hypoxia // High Alt. Med. Biol. – 2002. – 1. – P. 125–136.
  28. Semenza G. L. HIF–1: mediator of physiological and pathophysiological responses to hypoxia // J. Appl. Physiol. – 2000. – 88. – P. 1474–1480.
  29. 29. Wilber R.L. Current trends in altitude training // Sports Med. – 2001. – 31, №4. – P. 249–265.
  30. 30. Wolski L.A., McKenzie D.C., Wenger H.A. Altitude
  31. training for improvements in sea level performance. Is
  32. there scientific evidence of benefit? // Ibid. – 1996. –
  33. 22. – P. 251–263.

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2025.