Changes of intracellular calcium-regulating mechanisms ofprimary and secondary sensory neurones under periferal inflammation
N. Voitenko, E. Potapenko, V. Shishkin
A.A.Bogomoletz Institute of physiology, National Academy ofSciences of Ukraine, Kiev.
Abstract
Here we summarize the results of experimental investigation
of changes in intracellular calcium homeostasis in mice and rat
primary (dorsal root ganglia, DRG) and secondary (dorsal
horn, DH) sensory neurons under carrageenan-induced periferal
inflammation. A decrease in a calcium accumulation in both
inositoltriphosphate- and caffeine-sensitive endoplasmic
reticulum calcium stores has been detected in primary sensory
neurons under condition of peripheral inflammation. We have
also shown a decrease in the caffeine-induced calcium release
in dorsal horn neurons of inflamed rat as compared to control
ones. Decrease in the Ca 2+- accumulating properties of mitochondria
has been demonstrated in both DRG and DH neurons
with carrageenan-induced inflammation as compared with
neurons of control animals. We conclude that changes in Ca 2+ -
regulating structures of primary and secondary sensory neurons
could possibly lead to alterations in the transmission of
nociceptive signals during inflammation.
References
- Ahluwalia J., Urban L., Capogna M. et al. Cannabinoid 1 receptors are expressed in nociceptive primary sen- sory neurons // Neuroscience. – 2000. – 100, № 4. – P. 685–688.
- Bowersox S.S., Gadbois T., Singh T. et al. Selective N- type neuronal voltage-sensitive calcium channel blocker, SNX-111, produces spinal antinociception in rat models of acute, persistent and neuropathic pain // J. Pharmacol. Exp. Ther. – 1996. – 279, № 3. – P. 1243–1249.
- Di Giulio A.M., Lesma E., Gorio A. Diabetic neuropathy in the rat: 1. Alcar augments the reduced levels and axoplasmic transport of substance P // J. Neurosci. Res. – 1995. – 40, № 3. – P. 414–419.
- Grynkiewicz G., Poenie M., Tsien R.Y. A new genera- tion of Ca2+ indicators with greatly improved fluores- cence properties // J. Biol. Chem. – 1985. – 260, № 6. – P. 3440–3450.
- Kirischuk S., Voitenko N., Kostyuk P. et al. Age-associ- ated changes of cytoplasmic calcium homeostasis in cerebellar granule neurons in situ: investigation on thin cerebellar slices // Exp. Gerontol. – 1996. – 31, № 4. – P. 475–487.
- Kostyuk E., Svichar N., Shishkin V. et al. Role of mito- chondrial dysfunction in calcium signalling alterations in dorsal root ganglion neurons of mice with experi- mentally-induced diabetes // Neuroscience. – 1999. – 90, № 2. – P. 535–541.
- Kostyuk E., Voitenko N., Kruglikov I. et al. Diabetes- induced changes in calcium homeostasis and the ef- fects of calcium channel blockers in rat and mice no- ciceptive neurons 13 // Diabetologia. – 2001. – 44, № 10. – P. 1302–1309.
- Kruglikov I., Shutov L., Potapenko E. et al. Metabotro- pic purinoreceptors in rat dorsal horn neurones: pre- dominant dendritic location // Neuroreport. – 2001. – 12, № 16. – P. 3503–3507.
- 9. Melamed-Book N., Rahamimoff R. The revival of the role of the mitochondrion in regulation of transmitter release // J Physiol. – 1998. – 509 ( Pt 1). – P. 2.
- 10. Millan M.J. The induction of pain: an integrative review // Prog. Neurobiol. – 1999. – 57, № 1. – P. 1–164.
- Murase K., Ryu P.D., Randic M. Excitatory and in- hibitory amino acids and peptide-induced responses in acutely isolated rat spinal dorsal horn neurons // Neurosci. Lett. – 1989. – 103, № 1. – P. 56–63.
- Shishkin V., Potapenko E., Kostyuk E. et al. Role of mitochondria in intracellular calcium signaling in pri- mary and secondary sensory neurones of rats // Cell. Calcium. – 2002. – 32, № 3. – P. 121–130.
- Shmigol A., Kirischuk S., Kostyuk P. et al. Different properties of caffeine-sensitive Ca2+ stores in periph- eral and central mammalian neurones // Pflug. Arch. – 1994. – 426, № 1–2. – P. 174–176.
- Shmigol A., Kostyuk P., Verkhratsky A. Role of caffeine-sensitive Ca2+ stores in Ca2+ signal termina- tion in adult mouse DRG neurones // Neuroreport. – 1994. – 5, № 16. – P. 2073–2076.
- Shmigol A., Verkhratsky A., Isenberg G. Calcium-in- duced calcium release in rat sensory neurons // J. Physiol. (Lond. ). – 1995. – 489, № Pt 3. – P. 627–636.
- Stanfa L.C., Dickenson A.H. The role of non-N-methyl- D-aspartate ionotropic glutamate receptors in the spi- nal transmission of nociception in normal animals and animals with carrageenan inflammation // Neuroscience. – 1999. – 93, № 4. – P. 1391–1398.
- Stanton P.K., Schanne F.A. Hippocampal long-term po- tentiation increases mitochondrial calcium pump activity in rat // Brain. Res. – 1986. – 382, № 1. – P. 185–188.
- Svichar N., Shishkin V., Kostyuk E. et al. Changes inmitochondrial Ca2+ homeostasis in primary sensory neurons of diabetic mice // Neuroreport. –1998. – 9, № 6. – P. 1121–1125.
- 19. Szalai G., Krishnamurthy R., Hajnoczky G. Apoptosis driven by IP(3)-linked mitochondrial calcium signals // EMBO J. – 1999. – 18, № 22. – P. 6349–6361.
- 20. Usachev Y., Verkhratsky A. IBMX induces calcium release from intracellular stores in rat sensory neurones // Cell. Calcium. – 1995. – 17, № 3. – P. 197–206.
- Vasquez E., Bar K.J., Ebersberger A. et al. Spinal pros- taglandins are involved in the development but not the maintenance of inflammation-induced spinal hyperex- citability // J. Neurosci. – 2001. – 21, № 22. – P. 9001–9008.
|