Permeabilized salivary gland cells, asa model for to study calcium-trans-porting systems of endoplasmicreticulum membrane
О.V. Коpach, І.А. Kruglikov, N.V. Voitenko,P.G. Kostyuk, N.V. Fedirko
Ivan Franko National University of Lviv;A.A. Bogomoletz Institute of Physiology, NASU
Abstract
A method for chemical permeabilization of secretory cells of
rat submandibular salivary gland has been elaborated. It was
shown that the effects of digitonin on total calcium content in
permeabilized acinar cells and protein content in their incubation
medium correlated with concentration and duration of the
detergent treatment. Digitonin-permeabilized acinar cells perform
Ca 2+-dependent protein secretion, which level depends
on the duration of cell incubation in an intracellular
buffer solution. The ability of permeabilized acinar
cells to perform thapsigargin-sensitive ATP-dependent
Ca2+ transport was established by using biochemical approaches
and monitoring of the intrareticular calcium concentration
with mag-fura 2 dye. Thapsigargin-insensitive
Ca2+ store in the permeabilized acinar cells of the salivary
gland was shown to be also available. Thus, these data give
evidence to conclude that digitonin-permeabilized secretory cells of the submandibular salivary gland are an
adequate model to study the mechanisms of Ca 2+-dependent
control of the exocytosis and membrane Ca 2+-transporting systems of the intracellular calcium stores.
References
- Andersson C., Zhang A.L., Roomans G.M. Ca(2+) mobilization in the human submandibular duct cell line A253 // Cell Biol Int. – 2000. – 24, № 5. – P. 273 – 277.
- Brayden D.J., Hanley M.R., Thastrup O. et al. Thapsigargin, a new calcium-dependent epithelial anion secretagogue // Brit. J Pharmacol. – 1989. – 98, № 3. – P. 809 – 816.
- Chatton J.Y., Liu H., Stucki J.W. Simultaneous measurements of Ca2+ in the intracellular stores and the cytosol of hepatocytes during hormone-induced Ca2+ oscillations // FEBS Lett. – 1995. – 368, № 1. – P. 165 – 168.
- Churchill G.C., Louis C.F. Imaging of intracellular calcium stores in single permeabilized lens cells // Am J Physiol. – 1999. – 276, № 2 Pt 1. – P. C426 – C434.
- Fedirko N.V., Klevets M.Y., Kruglikov I.A. et al. Mechanisms mediating Ca2+ homeostasis in the secretory cells of submandibular salivary gland // Neurophysiology. – 2001. – 33, № 4. – P. 252 – 259.
- Gerasimenko O.V., Gerasimenko J.V., Belan P.V. et al. Inositol trisphosphate and cyclic ADP-ribose-mediated release of Ca2+ from single isolated pancreatic zymogen granules // Cell. – 1996. – 84, № 3. – P. 473 – 480.
- Golovina V.A., Blaustein M.P. Spatially and functionally distinct Ca2+ stores in sarcoplasmic and endoplasmic reticulum // Science. – 1997. – 275, № 5306. – P. 1643 – 1648.
- Grynkiewicz G., Poenie M., Tsien R.Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties // J. Biol. Chem. – 1985. – 260, № 6. – P. 3440 – 3450.
- 9. Hofer A.M., Machen T.E. Technique for in situ measurement of calcium in intracellular inositol 1,4,5-trisphos-phate-sensitive stores using the fluorescent indicator magfura-2 // Proc. Natl. Acad. Sci. U. S. A. – 1993. – 90, № 7. – P. 2598 – 2602.
- 10. Hofer A.M., Machen T.E. Direct measurement of free Ca in organelles of gastric epithelial cells // Amer. J. Physiol. – 1994. – 267, № 3 Pt 1. – P. G442 – G451.
- Howell T.W., Cockcroft S., Gomperts B.D. Essential synergy between Ca2+ and guanine nucleotides in exocytotic secretion from permeabilized rat mast cells // J. Cell Biol. – 1987. – 105, № 1. – P. 191 – 197.
- Hyrc K.L., Bownik J.M., Goldberg M.P. Ionic selectivity of low-affinity ratiometric calcium indicators: mag-Fura-2, Fura-2FF and BTC // Cell Calcium. – 2000. – 27, № 2. – P. 75 – 86.
- Knight D.E., Baker P.F. Calcium-dependence of catecholamine release from bovine adrenal medullary cells after exposure to intense electric fields // J. Membr. Biol. – 1982. – 68, № 2. – P. 107 – 140.
- Liu X.B., Sun X., Mork A.C. et al. Characterization of the calcium signaling system in the submandibular cell line SMG-C6 // Proc. Soc. Exp. Biol. Med. – 2000. – 225, № 3. – P. 211 – 220.
- Martin T.F., Walent J.H. A new method for cell permea-bilization reveals a cytosolic protein requirement for Ca2+- activated secretion in GH3 pituitary cells // J. Biol. Chem. – 1989. – 264, № 17. – P. 10299 – 10308.
- Murphy E., Coll K., Rich T.L. et al. Hormonal effects on calcium homeostasis in isolated hepatocytes // Ibid. – 1980. – 255, № 14. – P. 6600 – 6608.
- Pahl H.L. Signal transduction from the endoplasmic reticulum to the cell nucleus // Physiol Rev. – 1999. – 79, № 3. – P. 683 – 701.
- Park M.K., Petersen O.H., Tepikin A.V. The endoplasmic reticulum as one continuous Ca(2+) pool: visualization of rapid Ca(2+) movements and equilibration // EMBO J. – 2000. – 19, № 21. – P. 5729 – 5739.
- 19. Park M.K., Tepikin A.V., Petersen O.H. The relationship between acetylcholine-evoked Ca(2+)-dependent current and the Ca2+ concentrations in the cytosol and the lumen of the endoplasmic reticulum in pancreatic acinar cells // Pflugers Arch. – 1999. – 438, № 6. – P. 760 – 765.
- 20. Peppers S.C., Holz R.W. Catecholamine secretion from digitonin-treated PC12 cells. Effects of Ca2+, ATP, and protein kinase C activators // J. Biol. Chem. – 1986. – 261, № 31. – P. 14665 – 14669.
- Sarafian T., Aunis D., Bader M.F. Loss of proteins from digitonin-permeabilized adrenal chromaffin cells essential for exocytosis // Ibid. – 1987. – 262, № 34. – P. 16671 – 16676.
- Schafer T., Karli U.O., Gratwohl E.K. et al. Digitonin- permeabilized cells are exocytosis competent // J Neurochem. – 1987. – 49, № 6. – P. 1697 – 1707.
- Schulz I. Permeabilizing cells: some methods and applications for the study of intracellular processes // Methods Enzymol. – 1990. – 192. – P. 280 – 300.
- Shlykov S.G., Babich L.G., Kosterin S.A. Suspension of smooth muscle cells treated with digitonin as a model for studying the myometrial endoplasmic reticulum calcium pump // Bioche- mistry (Mosc.). – 1997. – 62, № 12. – P. 1424 – 1428.
- Solovyova N., Verkhratsky A. Neuronal endoplasmic reticulum acts as a single functional Ca2+ store shared by ryanodine and inositol-1,4,5-trisphosphate receptors as revealed by intra-ER [Ca2+] recordings in single rat sensory neurones // Pflugers Arch. – 2003. – 446, № 4. – P. 447 – 454.
- Tengholm A., Hellman B., Gylfe E. Mobilization of Ca2+ stores in individual pancreatic beta-cells permeabilized or not with digitonin or alpha-toxin // Cell Calcium. – 2000. – 27, № 1. – P. 43 – 51.
- Thomas A.P. Enhancement of the inositol 1,4,5-trisphosphate-releasable Ca2+ pool by GTP in permeabilized hepatocytes // J. Biol. Chem. – 1988. – 263, № 6. – P. 2704 – 2711.
- Toescu E.C., Gardner J.M., Petersen O.H. Mitochondrial Ca2+ uptake at submicromolar [Ca2+]i in permeabilised pancreatic acinar cells // Biochem. and Biophys. Res. Commun. – 1993. – 192, № 2. – P. 854 – 859.
- 29. Tse F.W., Tse A., Hille B. Cyclic Ca2+ changes in intracellular stores of gonadotropes during gonadotropinreleasing hormone-stimulated Ca2+ oscillations // Proc. Natl. Acad. Sci. USA. – 1994. – 91, № 21. – P. 9750 – 9754.
- 30. van de Put F.H., De Pont J.J., Willems P.H. GTP-sensitivity of the energy-dependent Ca2+ storage pool in permeabilized pancreatic acinar cells // Cell Calcium. – 1991. – 12, № 9. – P. 587 – 598.
- van de Put F.H., Elliott A.C. Imaging of intracellular calcium stores in individual permeabilized pancreatic acinar cells. Apparent homogeneous cellular distribution of inositol 1,4,5-trisphosphate-sensitive stores in permeabilized pancreatic acinar cells // J. Biol. Chem. – 1996. – 271, № 9. – P. 4999 – 5006.
- Vats J.A., Fedirko N.V., Klevets M.Y. et al. Role of SH Groups in the Functioning of Ca2+-Transporting ATPases Regulating Ca2+ Homeostasis and Exocytosis // Neurophysiology. – 2002. – 34, № 1. – P. 5 – 12.
- Waldron R.T., Short A.D., Gill D.L. Thapsigargin-resistant intracellular calcium pumps. Role in calcium pool function and growth of thapsigargin-resistant cells // J. Biol. Chem. – 1995. – 270, № 20. – P. 11955 – 11961.
|