|
|
|
|
|
|
Oxygen transport in skeletal muscle working at vo2MAX under arterialhypoxemia
I.N.Mankovska, K.G.Lyabakh
A.A.Bogomoletz Institute of Physiology National Academy, Kiev;V.M. Glushkov Institute of Cybernetics NAS of Ukraine, Kiev
Abstract
The influence of acute hypoxia (35< p aО2<100mm Hg) on the
values of V O2max and parameters of oxygen transport in muscle
working at V O2max was studied under different values of muscle
blood flow F (80≤F≤120 ml/(min100g), blood pH (7.0-7.6),
and different diffusion conditions. Investigations were
performed on a computer model of O 2 delivery to and O 2
consumption in the working muscle. V O2max, p vO2, p O2- and
V O2- fields in the muscular fiber were calculated. It was shown
that the greater the degree of arterial hypoxemia, the lower the
muscle V O2max and p vO2 values. The greater the blood flow
through muscle, the greater the V O2max.
The diffusion conditions produced a powerful influence on the V O2max value.
However, with an increasing degree of arterial hypoxemia, the
effect of F, intercapillary distances, and blood pH on the value
of V O2max is weakened.
References
- Багдасарова Т.A., Хаскин В.B. Влияние адаптации к гипоксии на зависимость тканевого дыхания от температуры и напряжения кислорода in vitro // Физиол. журн. СССР. – 1977. – 63, №10. – C.1598 – 1609.
- Филиппов M.M. Процесс массопереноса респираторных газов при мышечной деятельности. – В кн. Вторичная тканевая гипоксия / Под ред. А.З.Колчинской. – К.: Наук. думка, 1983. – С.197 – 216.
- Clark D., Erdmann W., Halsey J., Strang E. Oxygen diffusion conducting and solubility coefficient in the microarea of the brain // Adv. Exper. Med. Biol. – 1978. – 3.– P. 697 – 704.
- Cymerman A., Reeves J., Sutton J. et al. Operation Everest II: maximal oxygen uptake at extreme altitude // J. Appl. Physiol. – 1978. – 66. – P. 2446 – 2453.
- Groebe K. An easy-to-use model for O2 supply to red muscle. Validity of assumptions, sensitivity to errors in data // Biophys. J. – 1995. – 68. – P. 1248 – 1265.
- Hoofd L. Updating the Krogh model: assumptions and extensions. In: Oxygen transport in biological systems/ Eds. Egginton S., Ross H. – Cambridge: Cambridge University Press, 1992. – P.197 – 229.
- Houston C., Sutton J., Cymerman A., Reeves J. Operation Everest II: man at extreme altitude// J. Appl. Physiol. – 1987. – 63. – P. 877 – 882.
- Lyabakh K. Mathematical modeling of oxygen transport in skeletal muscle during exercise: hypoxia and VO2 max. // Adv. Exper. Med. Biol. – 1999. – 471. – P. 585 – 593.
- 9. Mankovskaya I., Lyabakh K. Oxygen transport to muscular tissue under adaptation to hypoxic hypoxia // Ibid. – P. 295 – 306.
- 10. Pugh L.Cardiac output in muscular exercise at 5800m (19,000ft. ) // J. Appl. Physiol. – 1964. – 19. – P. 441 – 447.
- Richardson R., Leigh J., Wagner P., Noyszewski E. Cellular Po2 as a determinant of maximal mitochondrial O2 consumption in trained human skeletal muscle // Ibid. – 1999. – 87. – P.325 – 331.
- Reeves J. Why does the exercise cardiac output fall during altitude residence and is it important? // Adv. Exper. Med. Biol. – 1999. – 474. – P.335 – 350.
- Richalet J., Robach P., Jarrot S. et al. Operation Everest III. Effects of prolonged and progressive hypoxia on humans during a simulated ascent to 8,848 m in a hypobaric chamber // Ibid. – P. 297 – 317.
- Rowell L. Neural control of muscle blood flow: importance during dynamic exercise// Clin. Exp. Pharmacol. Physiol. – 1997. – 24. – P.117 – 125.
- Roy T., Popel A. Theoretical predictions of end-capillary PO2 in muscles of athletic and nonathletic animals at VO2max // Amer. J. Physiol. – 1996. – 271. – P. H721 – H737.
- Serebrovskaya T., Ivashkevich A. Effects of a 1-year stay at altitude on ventilation, metabolism, and work capacity // J.Appl. Physiol. – 1992. – 73. – P.1749 – 1755.
- Severinghaus J. Exercise O2 transport model assuming zero cytochrome pO2 at VO2max // Ibid. – 1994. – 77. – P. 671 – 678.
- Sutton J., Reeves J., Wagner P. et al. Operation Everest II: Oxygen transport during exercise at extreme altitude // Ibid. – 1988. – 64. – P. 1309 – 1321.
- 19. Wagner P. A theoretical analysis of factors determining VO2max at sea level and altitude // Respir. Physiol. – 1996. – 196. – P. 329 – 343.
- 20. Wagner P., Gale G., Moon R. et al. Pulmonary gas exchange in humans exercising at sea level and simulated altitude // J. Appl. Physiol. – 1986. – 61. – P. 260 – 270.
- West J. Climbing Mt Everest without oxygen: an analysis of maximal exercise during extreme hypoxia // Respir. Physiol. – 1982. – 52. – P.265 – 279.
- West J., Wagner P. Predicted gas exchange on the summit of Mt Everest. Ibid.- 1980. – 42. – P.1 – 6.
|
|
|
|
|
|
|
© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.
|
|