Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2003; 49(3): 75-79


Oxygen transport in skeletal muscle working at vo2MAX under arterialhypoxemia

I.N.Mankovska, K.G.Lyabakh

    A.A.Bogomoletz Institute of Physiology National Academy, Kiev;V.M. Glushkov Institute of Cybernetics NAS of Ukraine, Kiev


Abstract

The influence of acute hypoxia (35< paО2<100mm Hg) on the values of VO2max and parameters of oxygen transport in muscle working at VO2max was studied under different values of muscle blood flow F (80&#8804;F&#8804;120 ml/(min100g), blood pH (7.0-7.6), and different diffusion conditions. Investigations were performed on a computer model of O2 delivery to and O2 consumption in the working muscle. VO2max, pvO2, pO2- and VO2- fields in the muscular fiber were calculated. It was shown that the greater the degree of arterial hypoxemia, the lower the muscle VO2max and pvO2 values. The greater the blood flow through muscle, the greater the VO2max. The diffusion conditions produced a powerful influence on the VO2max value. However, with an increasing degree of arterial hypoxemia, the effect of F, intercapillary distances, and blood pH on the value of VO2max is weakened.

References

  1. Багдасарова Т.A., Хаскин В.B. Влияние адаптации к гипоксии на зависимость тканевого дыхания от температуры и напряжения кислорода in vitro // Физиол. журн. СССР. – 1977. – 63, №10. – C.1598 – 1609.
  2. Филиппов M.M. Процесс массопереноса респираторных газов при мышечной деятельности. – В кн. Вторичная тканевая гипоксия / Под ред. А.З.Колчинской. – К.: Наук. думка, 1983. – С.197 – 216.
  3. Clark D., Erdmann W., Halsey J., Strang E. Oxygen diffusion conducting and solubility coefficient in the microarea of the brain // Adv. Exper. Med. Biol. – 1978. – 3.– P. 697 – 704.
  4. Cymerman A., Reeves J., Sutton J. et al. Operation Everest II: maximal oxygen uptake at extreme altitude // J. Appl. Physiol. – 1978. – 66. – P. 2446 – 2453.
  5. Groebe K. An easy-to-use model for O2 supply to red muscle. Validity of assumptions, sensitivity to errors in data // Biophys. J. – 1995. – 68. – P. 1248 – 1265.
  6. Hoofd L. Updating the Krogh model: assumptions and extensions. In: Oxygen transport in biological systems/ Eds. Egginton S., Ross H. – Cambridge: Cambridge University Press, 1992. – P.197 – 229.
  7. Houston C., Sutton J., Cymerman A., Reeves J. Operation Everest II: man at extreme altitude// J. Appl. Physiol. – 1987. – 63. – P. 877 – 882.
  8. Lyabakh K. Mathematical modeling of oxygen transport in skeletal muscle during exercise: hypoxia and VO2 max. // Adv. Exper. Med. Biol. – 1999. – 471. – P. 585 – 593.
  9. 9. Mankovskaya I., Lyabakh K. Oxygen transport to muscular tissue under adaptation to hypoxic hypoxia // Ibid. – P. 295 – 306.
  10. 10. Pugh L.Cardiac output in muscular exercise at 5800m (19,000ft. ) // J. Appl. Physiol. – 1964. – 19. – P. 441 – 447.
  11. Richardson R., Leigh J., Wagner P., Noyszewski E. Cellular Po2 as a determinant of maximal mitochondrial O2 consumption in trained human skeletal muscle // Ibid. – 1999. – 87. – P.325 – 331.
  12. Reeves J. Why does the exercise cardiac output fall during altitude residence and is it important? // Adv. Exper. Med. Biol. – 1999. – 474. – P.335 – 350.
  13. Richalet J., Robach P., Jarrot S. et al. Operation Everest III. Effects of prolonged and progressive hypoxia on humans during a simulated ascent to 8,848 m in a hypobaric chamber // Ibid. – P. 297 – 317.
  14. Rowell L. Neural control of muscle blood flow: importance during dynamic exercise// Clin. Exp. Pharmacol. Physiol. – 1997. – 24. – P.117 – 125.
  15. Roy T., Popel A. Theoretical predictions of end-capillary PO2 in muscles of athletic and nonathletic animals at VO2max // Amer. J. Physiol. – 1996. – 271. – P. H721 – H737.
  16. Serebrovskaya T., Ivashkevich A. Effects of a 1-year stay at altitude on ventilation, metabolism, and work capacity // J.Appl. Physiol. – 1992. – 73. – P.1749 – 1755.
  17. Severinghaus J. Exercise O2 transport model assuming zero cytochrome pO2 at VO2max // Ibid. – 1994. – 77. – P. 671 – 678.
  18. Sutton J., Reeves J., Wagner P. et al. Operation Everest II: Oxygen transport during exercise at extreme altitude // Ibid. – 1988. – 64. – P. 1309 – 1321.
  19. 19. Wagner P. A theoretical analysis of factors determining VO2max at sea level and altitude // Respir. Physiol. – 1996. – 196. – P. 329 – 343.
  20. 20. Wagner P., Gale G., Moon R. et al. Pulmonary gas exchange in humans exercising at sea level and simulated altitude // J. Appl. Physiol. – 1986. – 61. – P. 260 – 270.
  21. West J. Climbing Mt Everest without oxygen: an analysis of maximal exercise during extreme hypoxia // Respir. Physiol. – 1982. – 52. – P.265 – 279.
  22. West J., Wagner P. Predicted gas exchange on the summit of Mt Everest. Ibid.- 1980. – 42. – P.1 – 6.

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2018.