Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2002; 48(5): 67-73


N.M.Kurhalyuk1 , T.V.Serebrovskaya2, E.E.Kolesnikova 2, L.I.Aleksyuk2

  1. Ivan Franko Lviv National University;
  2. Bogomoletz Institute of PhysiologyUkrainian Academy of Sciences, Kiev 01024


It is known that protective effects of adaptation to intermittent hypoxia are mediated partly by stimulating of some mitochondrial and microsomal enzymes activity. Our objective was to investigate whether exogenous NO (L-arginine) or NO blocker (L-NNA) modulate mitochondrial and microsomal oxidation during acute hypoxia (AH) and intermittent hypoxic training (IHT). In control rats AH (inhalation of 7% O2, 30 min) provoked a decrease of ADP-stimulated liver mitochondrial respiration. However, the pattern of oxidation substrates was different from normoxic controls. In the presence of succinate, an increase of the Chance respiratory coefficient and the phosphorylation rate and a decrease of O2 uptake efficacy with simultaneous activation of aspartate aminotransferase activity were observed. Simultaneously, oxidation of a-ketoglutarate, an NAD-dependent substrate, was inhibited. IHT caused reorganization of mitochondrial energy metabolism favoring NAD-dependent oxidation and improving the protection against acute hypoxia. After 14 days of normobaric IHT (10% O2, 15-min sessions with 15 min rest intervals, 5 times daily), in comparison to controls acute hypoxic challenge in the presence of succinate resulted in an increase of the Chance respiratory coefficient, the ADP/O ratio and the phosphorylation rate, in activation of both aspartate and alanine aminotranferases, and in less lipid peroxidation. The microsomal oxidation was not changed under AH per se but significantly decreased (by 37%) during acute hypoxic test after ITH. These findings indicated a more efficient use of oxygen under hypoxic conditions after IHT preconditioning. The combination of IHT with L-arginine treatment (600 mg/kg intraperitoneally, daily before IHT sessions) provoked more pronounced decrease of tissue oxygen consumption and microsomal oxidative processes in comparison with IHT animals. L-arginine effects were abolished by the NO-synthase blocker L-NNA. We conclude that the combination of IHT with NO-donor treatment provokes a decrease in aerobic link of energy regulation thereby increasing the tolerance to episodes of acute hypoxia.

Keywords: adaptation, hypoxia,


  1. Ещенко Н.Д., Вольский Г.Г. Определение количества янтарной кислоты и активности сукцинатдегидрогеназы: Методы биохимических исследований. -Л.: Изд-во Ленингр. ун-та, 1982.– С.207–212.
  2. Карузина И. И., Арчаков А. И. Выделение микросомальной фракции печени и характеристика ее окислительных систем. – В кн.: Современные методы в биохимии /Под ред. В. И. Ореховича. – М.: Медицина, 1977. – С. 49 – 52.
  3. Лебкова Н.П., Чижов А.Я., Бобков Ю.И. Адаптационные внутриклеточные механизмы регуляции энергетического гомеостаза при прерывистой нормобарической гипоксии // Рос. физиолжурн. им. И.Сеченова. – 1999.–85, №3.– С.403–411.
  4. Лукьянова Л.Д. Современные проблемы гипоксии // Вестн. РАМН. – 2000. – №9. – С.3–12.
  5. Ратникова Л. А., Чистяков В. В., Ягужинский Л. С. Регуляторные взаимодействия дыхательной цепи митохондрий и окислительной системы эндоплазматического ретикулума // Биохимия. -1978. – 43, №10. – С. 1809 – 1816.
  6. Семенов В.Л., Ярош А.М. Влияние гипоксии на окислительное фосфорилирование и перекисное окисление липидов митохондрий печени крыс при воспалении легких // Укр. биохим. журн.–1991.– 63, №2.– С.95–101.
  7. Скулачев В.П. Снижение внутриклеточной концентрации О2 как особая функция дыхательных систем клетки // Биохимия.– 1994.- 59, № 12.–С.1910–1912.
  8. Стальная И.Д. Метод определения диеновой конъюгации ненасыщенных высших жирных кислот. – В кн.: Современные методы в биохимии / Под ред. В.Н.Ореховича. – М., Медицина. –1977.– С.63–64.
  9. 9. Темнов А.В., Сирота Т.В., Ставровская И.Г. и др. Влияние супероксида воздуха на структурную организацию и фосфорилирующее дыхание митохондрий // Биохимия.– 1997.–62, № 10.–С.1272–1279.
  10. 10. Тимирбулатов Т.А., Селезнев С.И. Метод определения интенсивности свободнорадикального окисления липидсодержащих компонентов крови и его диагностическое значение // Лаб.де-ло.– 1988.– № 4.– С.209–211.
  11. Хаценко О. Взаимодействие оксида азота и цитохрома Р–450 в печени // Биохимия. – 1998. –63, № 7. – С. 984 – 991.
  12. Brown G.C. Nitric oxide and mitochondrial respiration // Biochim and Biophys. Acta. – 1999. –1411, № 2-3. – P.351–369.
  13. Chance B., Williams G. The respiratory chain and oxidative phosphorylation // Adv. Enzymol.-1956. – 17.– P.65–134.
  14. Giulivi C. Functional implications of nitric oxide produced by mitochondria in mitochondrial metabolism // Biochem. J.– 1998.– 332.–P.673–679.
  15. Henry Y., Guissani A. Interactions of nitric oxide with hemoproteins: roles of nitric oxide in mito-chondria //Cell. Mol.Life Sci. – 1999.–55.–P.1003–1014.
  16. Skulachev V.P. Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants // Q. Rev.Biophys. – 1996. – 29. – P.169–202.
  17. Skulachev V.P. Why are mitochondria involved in apoptosis? Permeability transition pores and apoptosis as selective mechanisms to eliminatesuperoxide producing mitochondria and cell //FEBS Lett. – 1996. – 397. – P.7–10.

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2018.