Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

(English title: Physiological Journal)

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2025; 71(3): 120-132


ENDOCRINE FUNCTION OF SKELETAL MUSCLES

S.N. Vadzyuk, P.S. Tabas

  1. I. Horbachevsky Ternopil National Medical University, Ukraine
DOI: https://doi.org/10.15407/fz71.03.120


Abstract

Myokines are signaling molecules produced by skeletal muscle in response to exercise and exert a wide range of physiological effects in various organs and tissues. They play a key role in regulating metabolic processes, modulating the immune response, and maintaining homeostasis of the body. The relationship between the level of physical activity and the production of myokines determines their therapeutic potential in maintaining cardiovascular and nervous system health. Studies also show that certain types of physical activity can activate different myokines, which allows for targeted effects on certain aspects of metabolic health. Studies indicate significant potential for myokines as therapeutic targets for improving health and preventing chronic diseases, especially in the context of cardiometabolic disorders, including hypertension, atherosclerosis, and heart failure.

Keywords: myokines; endocrine function; skeletal muscle physiology; physical activity; metabolic homeostasis; immune mechanisms; insulin resistance; interleukins; regeneration; cognitive dysfunctions; sarcopenia

References

  1. Cardozo CP, Graham ZA. Muscle-bone interactions: movement in the field of mechano-humoral coupling of muscle and bone. Ann New York Acad Sci. 2017;1402(1):10-7. CrossRef PubMed
  2. Huh JY. The role of exercise-induced myokines in regulating metabolism. Arch Pharm Res. 2018;41(1):14-29. CrossRef PubMed
  3. Pedersen BK, Steensberg A, Fischer C, Keller C, Keller P, Plomgaard P, et al. Searching for the exercise factor: is IL-6 a candidate? J Muscle Res Cell Motil. 2003;24 (2-3):113-9. CrossRef.1023/A:1026070911202 PubMed
  4. Pedersen BK, Febbraio MA. Muscle as an endocrine organ: Focus on muscle-derived interleukin-6. Physiol Rev. 2008;88(4):1379-406. CrossRef PubMed
  5. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol. 2012;8(8):457-65. CrossRef PubMed
  6. Pedersen BK. Physical activity and muscle-brain crosstalk. Nat Rev Endocrinol. 2019;15(7):383-92. CrossRef PubMed
  7. Frontera WR, Ochala J. Skeletal muscle: A brief review of structure and function. Calcif Tissue Int. 2015;96(3):183-95. CrossRef PubMed
  8. Richter EA, Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev. 2013;93(3):993-1017. CrossRef PubMed
  9. Leal LG, Lopes MA, Batista ML. Physical exerciseinduced myokines and muscle-adipose tissue crosstalk: A review of current knowledge and the implications for health and metabolic diseases. Front Physiol. 2018;9:1307. CrossRef PubMed PubMedCentral
  10. Chen W, Wang L, You W, Shan T. Myokines mediate the cross talk between skeletal muscle and other organs. J Cell Physiol. 2021;236(4):2393-412. CrossRef PubMed
  11. Chan WS, Ng CF, Pang BPS, Hang M, Tse MCL, Iu ECY, et al. Exercise-induced BDNF promotes PPARδdependent reprogramming of lipid metabolism in skeletal muscle during exercise recovery. Sci Sign. 2024;17(828):eadh2783. CrossRef PubMed PubMedCentral
  12. Karlsson L, González-Alvarado MN, Motalleb R, Blomgren K, Börjesson M, Kuhn HG. Constitutive PGC1α overexpression in skeletal muscle does not protect from age-dependent decline in neurogenesis. Sci Rep. 2019;9(1):12320. CrossRef PubMed PubMedCentral
  13. Rai M, Demontis F. Muscle-to-brain signaling via myokines and myometabolites. Brain Plast. 2022;8(1):43-63. CrossRef PubMed PubMedCentral
  14. Mirebeau‐Prunier D, Le Pennec S, Jacques C, Gueguen N, Poirier J, Malthiery Y, et al. Estrogen‐related receptor α and PGC‐1‐related coactivator constitute a novel complex mediating the biogenesis of functional mitochondria. FEBS J. 2010;277(3):713-25. CrossRef PubMed
  15. Reisman EG, Hawley JA, Hoffman NJ. Exercise-regulated mitochondrial and nuclear signalling networks in skeletal muscle. Sport Med. 2024;54(5):1097-119. CrossRef PubMed PubMedCentral
  16. Laurens C, Bergouignan A, Moro C. Exercise-released myokines in the control of energy metabolism. Front Physiol. 2020;11:91. CrossRef PubMed PubMedCentral
  17. Ning K, Wang Z, Zhang X. Exercise-induced modulation of myokine irisin in bone and cartilage tissue-Positive effects on osteoarthritis: A narrative review. Front Aging Neurosci. 2022;14:934406. CrossRef PubMed PubMedCentral
  18. Guo A, Li K, Xiao Q. Sarcopenic obesity: Myokines as potential diagnostic biomarkers and therapeutic targets? Exp Gerontol. 2020;139:111022. CrossRef PubMed
  19. Leger C, Quirié A, Méloux A, Fontanier E, Chaney R, Basset C, et al. Impact of exercise intensity on cerebral BDNF levels: Role of FNDC5/irisin. Int J Mol Sci. 2024;25(2):1213. CrossRef PubMed PubMedCentral
  20. Tsourdi E, Anastasilakis AD, Hofbauer LC, Rauner M, Lademann F. Irisin and bone in sickness and in health: A narrative review of the literature. J Clin Med. 2022;11(22):6863. CrossRef PubMed PubMedCentral
  21. Kawao N, Iemura S, Kawaguchi M, Mizukami Y, Takafuji Y, Kaji H. Role of irisin in effects of chronic exercise on muscle and bone in ovariectomized mice. J Bone Miner Metab. 021;39(4):547-57. CrossRef PubMed
  22. Arıkan S, Alaca N, Özbeyli D, Elmas MA, Arbak S, Suyen G. Effects of moderate aerobic exercise, low-level laser therapy, or their combination on muscles pathology, oxidative stress and irisin levels in the Mdx mouse model of Duchenne muscular dystrophy. Laser Med Sci. 2022;37(7):2925-36. CrossRef PubMed
  23. Kang YS, Kim JC, Kim JS, Kim SH. Effects of swimming exercise on serum irisin and bone FNDC5 in rat models of high-fat diet-induced osteoporosis. J Sport Sci Med. 2019;18(4):596.
  24. Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, et al. A PGC1-α-dependent myokine that drives brownfat-like development of white fat and thermogenesis. Nature. 2012;481(7382):463-8. CrossRef PubMed PubMedCentral
  25. Li H, Qin S, Liang Q, Xi Y, Bo W, Cai M, et al. Exercise training enhances myocardial mitophagy and improves cardiac function via Irisin/FNDC5-PINK1/Parkin pathway in MI mice. Biomedicines. 2021;9(6):701. CrossRef PubMed PubMedCentral
  26. Norheim F, Langleite TM, Hjorth M, Holen T, Kielland A, Stadheim HK, et al. The effects of acute and chronic exercise on PGC‐1α, irisin and browning of subcutaneous adipose tissue in humans. FEBS J. 2014;281(3):739-49. CrossRef PubMed
  27. McCormick JJ, King KE, Notley SR, Fujii N, Boulay P, Sigal RJ, et al. Exercise in the heat induces similar elevations in serum irisin in young and older men despite lower resting irisin concentrations in older adults. J Therm Biol. 2022;104:103189. CrossRef PubMed
  28. Mu S, Ding D, Ji C, Wu Q, Xia Y, Zhou L, et al. Relationships between circulating irisin response to ice swimming and body composition in people with regular exercise experience. Front Physiol. 2021;11:596896. CrossRef PubMed PubMedCentral
  29. Lu Z, Wang Z, Zhang XA, Ning K. Myokines May be the answer to the beneficial immunomodulation of tailored exercise-a narrative review. Biomolecules. 2024;14(10):1205. CrossRef PubMed PubMedCentral
  30. Mazur-Bialy AI. Irisin acts as a regulator of macrophages host defense. Life Sci. 2017;176:21-5. CrossRef PubMed
  31. Borgia F, Li Pomi F, Vaccaro M, Alessandrello C, Papa V, Gangemi S. Oxidative stress and phototherapy in atopic dermatitis: Mechanisms, role, and future perspectives. Biomolecules. 2022;12(12):1904. CrossRef PubMed PubMedCentral
  32. Mazur-Bialy A, Kozlowska K, Pochec E, Bilski J, Brzozowski T. Myokine irisin-induced protection against oxidative stress in vitro. Involvement of heme oxygenase-1 and antioxidazing enzymes superoxide dismutase-2 and glutathione peroxidase. J Physiol Pharmacol. 2018;69(1):117-25.
  33. Mazur-Bialy AI, Pocheć E. The time-course of antioxidant irisin activity: Role of the Nrf2/HO-1/HMGB1 axis. Antioxidants. 2021;10(1):88. CrossRef PubMed PubMedCentral
  34. Dong J, Dong Y, Dong Y, Chen F, Mitch WE, Zhang L. Inhibition of myostatin in mice improves insulin sensitivity via irisin-mediated cross talk between muscle and adipose tissues. Int J Obes. 2016;40(3):434-42. CrossRef PubMed PubMedCentral
  35. Ye W, Wang J, Lin D, Ding Z. The immunomodulatory role of irisin on osteogenesis via AMPK-mediated macrophage polarization. Int J Biol Macromol. 2020;146:25-35. CrossRef PubMed
  36. Zheng G, Li H, Zhang T, Yang L, Yao S, Chen S, et al. Irisin protects macrophages from oxidized low density lipoprotein-induced apoptosis by inhibiting the endoplasmic reticulum stress pathway. Saudi J Biol Sci. 2018;25(5):849-57. CrossRef PubMed PubMedCentral
  37. Li K, Chen J, Wang C, Shao J, Lai Z, Yu X, et al. Irisin ameliorates nicotine-mediated atherosclerosis via inhibition of the PI3K pathway. Ann Transl Med. 2021;9(9):805. CrossRef PubMed PubMedCentral
  38. Guo A, Li K, Xiao Q. Sarcopenic obesity: Myokines as potential diagnostic biomarkers and therapeutic targets? Exp Gerontol. 2020;139:111022. CrossRef PubMed
  39. Kirk B, Feehan J, Lombardi G, Duque G. Muscle, Bone, and fat crosstalk: the biological role of myokines, osteokines, and adipokines. Curr Osteoporos Rep. 2020;18(4):388-400. CrossRef PubMed
  40. Raschke S, Eckel J. Adipo-myokines: Two sides of the same coin-mediators of inflammation and mediators of exercise. Mediat Inflamm. 2013;2013:1-16. CrossRef PubMed PubMedCentral
  41. Northoff H, Berg A. Immunologic mediators as parameters of the reaction to strenuous exercise. Int J Sport Med. 1991;12:S9-15. CrossRef PubMed
  42. Mathers JL, Farnfield MM, Garnham AP, Caldow MK, Cameron‐Smith D, Peake JM. Early inflammatory and myogenic responses to resistance exercise in the elderly. Muscle Nerve. 2012;46(3):407-12. CrossRef PubMed
  43. Schindler R, Mancilla J, Endres S, Ghorbani R, Clark S, Dinarello C. Correlations and interactions in the production of interleukin-6 (IL-6), IL-1, and tumor necrosis factor (TNF) in human blood mononuclear cells: IL-6 suppresses IL-1 and TNF. Blood. 1990;75(1):40-7. CrossRef PubMed
  44. Willoughby DS, McFarlin B, Bois C. Interleukin-6 expression after repeated bouts of eccentric exercise. Int J Sports Med. 2003;24(1):15-21. CrossRef PubMed
  45. Ahn N, Kim K. Effects of aerobic and resistance exercise on myokines in high fat diet-induced middle-aged obese rats. Int J Environ Res Publ Health. 2020;17(8):2685. CrossRef PubMed PubMedCentral
  46. Alizadeh Pahlavani H. Exercise therapy for people with sarcopenic obesity: myokines and adipokines as effective actors. Front Endocrinol. 2022;13:811751. CrossRef PubMed PubMedCentral
  47. Jia D, Cai M, Xi Y, Du S, ZhenjunTian. Interval exercise training increases LIF expression and prevents myocardial infarction-induced skeletal muscle atrophy in rats. Life Sci. 2018;193:77-86. CrossRef PubMed
  48. Broholm C, Laye MJ, Brandt C, Vadalasetty R, Pilegaard H, Pedersen BK, et al. LIF is a contraction-induced myokine stimulating human myocyte proliferation. J Appl Physiol. 2011;111(1):251-9. CrossRef PubMed
  49. Saberi S, Askaripour M, Khaksari M, Amin Rajizadeh M, Abbas Bejeshk M, Akhbari M, et al. Exercise training improves diabetic renal injury by reducing fetuin-A, oxidative stress and inflammation in type 2 diabetic rats. Heliyon. 2024;10(6):e27749. CrossRef PubMed PubMedCentral
  50. Jung SH, Park HS, Kim KS, Choi WH, Ahn CW, Kim BT, et al. Effect of weight loss on some serum cytokines in human obesity: increase in IL-10 after weight loss. J Nutr Biochem. 2008;19(6):371-5. CrossRef PubMed
  51. Micielska K, Gmiat A, Zychowska M, Kozlowska M, Walentukiewicz A, Lysak-Radomska A, et al. The beneficial effects of 15 units of high-intensity circuit training in women is modified by age, baseline insulin resistance and physical capacity. Diabet Res Clin Pract. 2019;152:156-65. CrossRef PubMed
  52. Park KM, Park SC, Kang S. Effects of resistance exercise on adipokine factors and body composition in pre- and postmenopausal women. J Exe Rehabil. 2019;15(5):676-82. CrossRef PubMed PubMedCentral
  53. Binder DK, Scharfman HE. Brain-derived neurotrophic factor. Growth Factors Chur Switz. 2004;22(3):123. CrossRef PubMed PubMedCentral
  54. Tsimpolis A, Kalafatakis K, Charalampopoulos I. Recent advances in the crosstalk between the brain-derived neurotrophic factor and glucocorticoids. Front Endocrinol. 2024;15:1362573. CrossRef PubMed PubMedCentral
  55. Li C, Wang X, Yan J, Cheng F, Ma X, Chen C, et al. cholic acid protects in vitro neurovascular units against oxygen and glucose deprivation-induced injury through the BDNF-TrkB signaling Pathway. Oxid Med Cell Long. 2020;2020:1-14. CrossRef PubMed PubMedCentral
  56. Kumari S, Dhapola R, Reddy DH. Apoptosis in Alzheimer's disease: insight into the signaling pathways and therapeutic avenues. Apoptosis. 2023;28(7-8):943-57. CrossRef PubMed
  57. Amidfar M, De Oliveira J, Kucharska E, Budni J, Kim YK. The role of CREB and BDNF in neurobiology and treatment of Alzheimer's disease. Life Sci. 2020;257:118020. CrossRef PubMed
  58. Edman S, Horwath O, Van der Stede T, Blackwood SJ, Moberg I, Strömlind H, et al. Pro-brain-derived neurotrophic factor (BDNF), but not mature BDNF, is expressed in human skeletal muscle: Implications for exercise-induced neuroplasticity. Function. 2024;5(3):zqae005. CrossRef PubMed PubMedCentral
  59. Wang L, Bian X, Liu L, He Q, Xu J, Chen X, et al. Association between cognitive function and skeletal muscle in patients undergoing maintenance hemodialysis. Front Endocrinol. 2024;15:1324867. CrossRef PubMed PubMedCentral
  60. Bastioli G, Arnold JC, Mancini M, Mar AC, Gamallo-Lana B, Saadipour K, et al. Voluntary exercise boosts striatal dopamine release: Evidence for the necessary and sufficient role of BDNF. J Neurosci. 2022;42(23):4725-36. CrossRef PubMed PubMedCentral
  61. Håkansson K, Ledreux A, Daffner K, Terjestam Y, Bergman P, Carlsson R, et al. BDNF responses in healthy older persons to 35 minutes of physical exercise, cognitive training, and mindfulness: Associations with working memory function. J Alzheimers Dis. 2016;55(2):645-57. CrossRef PubMed PubMedCentral
  62. Azevedo LVDS, Pereira JR, Silva Santos RM, Rocha NP, Teixeira AL, Christo PP, et al. Acute exercise increases BDNF serum levels in patients with Parkinson's disease regardless of depression or fatigue. Eur J Sport Sci. 2022;22(8):1296-303. CrossRef PubMed
  63. Leger C, Quirié A, Méloux A, Fontanier E, Chaney R, Basset C, et al. Impact of exercise intensity on cerebral BDNF levels: Role of FNDC5/irisin. Int J Mol Sci. 2024;25(2):1213. CrossRef PubMed PubMedCentral
  64. Rahmani F, Saghazadeh A, Rahmani M, Teixeira AL, Rezaei N, Aghamollaii V, et al. Plasma levels of brainderived neurotrophic factor in patients with Parkinson disease: A systematic review and meta-analysis. Brain Res. 2019;1704:127-36. CrossRef PubMed
  65. Bi C, Fu Y, Li B. Brain-derived neurotrophic factor alleviates diabetes mellitus-accelerated atherosclerosis by promoting M2 polarization of macrophages through repressing the STAT3 pathway. Cell Sign. 2020;70:109569. CrossRef PubMed
  66. Sasaki S, Takeda K, Ouhara K, Shirawachi S, Kajiya M, Matsuda S, et al. Involvement of Rac1 in macrophage activation by brain-derived neurotrophic factor. Mol Biol Rep. 2021;48(6):5249-57. CrossRef PubMed
  67. Bi C, Fu Y, Zhang Z, Li B. Prostaglandin E2 confers protection against diabetic coronary atherosclerosis by stimulating M2 macrophage polarization via the activation of the CREB/BDNF/TrkB signaling pathway. FASEB J. 2020;34(6):7360-71. CrossRef PubMed
  68. Oulion S, Bertrand S, Escriva H. Evolution of the FGF gene family. Int J Evolut Biol. 2012;2012:1-12. CrossRef PubMedCentral
  69. Hamrick MW, McNeil PL, Patterson SL. Role of musclederived growth factors in bone formation. J Musculoskelet Neuron Interact. 2010;10(1):64-70.
  70. Soori R, Amini AA, Choobineh S, Eskandari A, Behjat A, Ghram A, et al. Exercise attenuates myocardial fibrosis and increases angiogenesis-related molecules in the myocardium of aged rats. Arch Physiol Biochem. 2022;128(1):1-6. CrossRef PubMed
  71. Brenner DR, Ruan Y, Adams SC, Courneya KS, Friedenreich CM. The impact of exercise on growth factors (VEGF and FGF2): results from a 12-month randomized intervention trial. Eur Rev Aging Phys Act. 2019;16(1):8. CrossRef PubMed PubMedCentral
  72. Gao Y, Zhang W, Zeng LQ, Bai H, Li J, Zhou J, et al. Exercise and dietary intervention ameliorate high-fat dietinduced NAFLD and liver aging by inducing lipophagy. Redox Biol. 2020;36:101635. CrossRef PubMed PubMedCentral
  73. Kim H jae, Song W. Resistance training increases fibroblast growth factor-21 and irisin levels in the skeletal muscle of Zucker diabetic fatty rats. J Exe Nutr Biochem. 2017;21(3):50-4. CrossRef PubMed PubMedCentral
  74. Ji M, Cho C, Lee S. Acute effect of exercise intensity on circulating FGF-21, FSTL-1, cathepsin B, and BDNF in young men. J Exe Sci Fit. 2024;22(1):51-8. CrossRef PubMed PubMedCentral
  75. Khalafi M, Alamdari KA, Symonds ME, Nobari H, CarlosVivas J. Impact of acute exercise on immediate and following early post-exercise FGF-21 concentration in adults: systematic review and meta-analysis. Hormones. 2021;20(1):23-33. CrossRef PubMed
  76. Ruan R, Li L, Li X, Huang C, Zhang Z, Zhong H, et al. Unleashing the potential of combining FGFR inhibitor and immune checkpoint blockade for FGF/FGFR signaling in tumor microenvironment. Mol Cancer. 2023;22(1):60. CrossRef PubMed PubMedCentral
  77. Im JH, Buzzelli JN, Jones K, Franchini F, Gordon-Weeks A, Markelc B, et al. FGF2 alters macrophage polarization, tumor immunity and growth and can be targeted during radiotherapy. Nat Commun. 2020;11(1):4064. CrossRef PubMed PubMedCentral
  78. Yu Y, He J, Li S, Song L, Guo X, Yao W, et al. Fibroblast growth factor 21 (FGF21) inhibits macrophage-mediated inflammation by activating Nrf2 and suppressing the NF-κB signaling pathway. Int Immunopharmac. 2016;38:144-52. CrossRef PubMed
  79. Wang D, Liu F, Zhu L, Lin P, Han F, Wang X, et al. FGF21 alleviates neuroinflammation following ischemic stroke by modulating the temporal and spatial dynamics of microglia/macrophages. J Neuroinflammat. 2020;17(1):257. CrossRef PubMed PubMedCentral
  80. Kang K, Xia A, Meng F, Chunyu J, Sun X, Ren G, et al. FGF21 alleviates chronic inflammatory injury in the aging process through modulating polarization of macrophages. Int Immunopharmac. 2021;96:107634. CrossRef PubMed

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2025.