Interaction of propoxazepam with human liver cytochrome P450 2C9 and its therapeutic implications
M.Ya. Golovenko1, I. P. Valivodz1, A.S. Reder2, V .B. Larionov1, V .E. Litvinova3
- A.V. Bogatsky Physico-Chemical Institute of the National Academy of Sciences of Ukraine; Odesa, Ukraine
- SLC «INTERCHEM», Odesa, Ukraine
- Odesa National University, Faculty of Chemistry and Pharmacy, Ukraine
DOI: https://doi.org/10.15407/fz71.03.081

Abstract
Propoxazepam is a novel benzodiazepine-derived analgesic that has completed Phase I clinical trials, dem-
onstrating its safety and appropriate pharmacokinetics. Phase II trials are currently underway to evaluate
its effectiveness in treating neuropathic pain. This study aimed to investigate the effect of propoxazepam
on CYP2C9 activity in human liver microsomes and to determine the inhibitory mechanisms underlying its
action on the enzyme. These findings may contribute to a comprehensive assessment of potential drug-drug
interactions involving propoxazepam. To evaluate CYP2C9 activity, we used the reaction of diclofenac
hydroxylation and selective inhibitors (as positive controls): sulfaphenazole for reversible and thienylic
acid for metabolism-dependent inhibition. Propoxazepam inhibited CYP2C9 activity, with IC
50
values of
32.7 ± 2.8 μmol/l for reversible and 49.0 ± 12.6 μmol/l for metabolism-dependent inhibition. The highest
concentration of free, unbound propoxazepam in plasma that could result in interaction is ≥0.327 µmol/l
(0.133 µg/ml). This corresponds, given that only 1.96% of total plasma propoxazepam exists in the free
fraction, to a total plasma concentration of 6.8 µg/ml, but the concentrations in the volunteer`s blood are
much lower after single oral administration.
Keywords:
propoxazpepam; CYP2C9; diclofenac; sulphaphenazole; tienilic acid; revercible inhibition; metabolism dependent inhibition; drug-drug interaction
References
- Guengerich FP. Wilkey CJ, Phan TN. Human cytochrome P450 enzymes bind drugs and other substrates mainly through conformational-selection modes. J. Biol Chem. 2019; 28(294): 10928-41.
CrossRef
PubMed PubMedCentral
- Coon MJ, Ding X, Pernecky SJ, Vaz ADN. Cytochrome P450; progress and predictions. FASEB J (Bethesda, MD). 1992; 6: 669-73.
CrossRef
PubMed
- G. W. M. Chang, P. C. A. Kam. The physiological and pharmacological roles of cytochrome P450 isoenzymes. Anaesthesia. 1999;546: 42-50.
CrossRef
PubMed
- Waterman MR, Bischof LJ. Diversity of ACTH(cAMP)- dependent transcription of bovine hydroxlase genes. FASEB J (Bethesda, MD). 1997; 11: 419-27.
CrossRef
PubMed
- Slaughter RL, Edwards DJ. Recent advances: the cytochrome P450 enzymes. Ann Pharmacother. 1995; 29: 619-24.
CrossRef
PubMed
- JH. Capdevila, JR Falck. Roles of the cytochrome P450 arachidonic acid monooxygenases in the control of systemic blood pressure and experimental hypertension. Kidney Int. 2007; 72: 683-9.
CrossRef
PubMed
- Ayesh R, Idle JR, Ritchie JC. Metabolic oxidation pheno-types and markers for the susceptibility to lung cancer. Nature 1984;312:169-70.
CrossRef
PubMed
- Mumtaz Iscan, Tuula Klaavuniemi, Tulay Çoban, Nilgun Kapucuoğlu, Olavi Pelkonen, Hannu Raunio. The expression of cytochrome P450 enzymes in human breast tumors and normal breast tissue. Breast Cancer Res Treat. 2001; 70: 47-54.
CrossRef.1023/A:1012526406741
PubMed
- White PC, New MI, Dupont B. Congenital adrenal hyper-plasia. New Engl J Med. 1987; 316: 1519-24.
CrossRef
PubMed
- European Medicines Agency [EMA]. Guideline on the in-vestigation of drug interactions, 21 June 2012, Reference Number:CPMP/EWP/560/95/Rev.1 Corr.2**. Available at http://www.ema.europa.eu.
- Golovenko MYa, Babenko MM, Larionov VB, Zhukova NO, Tkachenko EV , Valivodz IP. Research in vitro drug interactions mediated by cytochrome P450 isoenzymes. Ministry of Health of Ukraine. State Expert Center. Kyiv, 2023, 52 p. [Ukrainian].
- Romkes M, Faletto MB, Blaisdell JA, Raucy JL, Gold-stein JA. Genetic analysis of the cytochrome P-450IIC18 (CYP2C18) gene and a novel member of the CYP2C subfamily. Biochemistry. 1991; 30: 3247-55.
CrossRef
PubMed
- Golovenko MY a. Propoxazepam is an innovative analgesic that inhibits acute and chronic pain and has a polymodal mechanism of action. Visn Natl Acad Sci Ukr. 2021;4: 76-90. [Ukrainian].
- Golovenko NYa, Larionov VB, Reder AS, Valivodz IP. An еffector analysis of the interaction of propoxazepam with antagonists of GABA and glycine receptors. Neurochem J. 2017; 11(4): 302-8.
CrossRef
- Golovenko NYa, V oloshchuk NI, Andronati SA, Taran IV , Reder AS, Pashynska OS, Larionov VB. Antinociception induced by a novel benzodiazepine receptor agonist and bradykinin receptor antagonist in rodent acute and chronic pain models. EJBPS. 2018; 5(12):79-88.
- Golovenko Mykola, Reder Anatoliy, Zupanets Igor, Bezugla Nataliia, Larionov Vitalii, V alivodz Irina. A phase I study evaluating the pharmacokinetic profile of a novel oral analgesic propoxazepam. J Pre-Clin Clin Res. 2023; 17(3):138-44.
CrossRef
- Rostami-Hodjegan A, Tucker GT. Simulation and predic-tion of in vivo drug metabolism in human populations from in vitro data. Nat Rev Drug Discov. 2007; 6(2): 140-8.
CrossRef
PubMed
- Frank D, Jaehde U, Fuhr U. Evaluation of probe drugs and pharmacokinetic metrics for CYP2D6 phenotyping. Eur J Clin Pharmacol. 2007; 63(4): 321-33.
CrossRef
PubMed
- Chaitali Ghosh, Mohammed Hossain, Jesal Solanki, Aaron Dadas, Nicola Marchi, Damir Janigro. Pathophysiological implications of neurovascular P450 in brain disorders. Drug Discov Today. 2016; 21(10): 1609-19.
CrossRef
PubMed PubMedCentral
- Schenkman JB, Jansson I. Spectral analyses of cyto-chromes P450. Method Mol Biol. 2006; 320:11-8.
CrossRef.1385/1-59259-998-2:11
PubMed
- Golovenko MYa, Larionov VB, Valivodz IP. Spectral characteristics of cytochrome P450 in the interaction with propoxazepam and its metabolite. Med Clin Chem. 2023; 25(2): 12-19.
- Larionov VB, Golovenko MYa, Kuzmin VE, Valivodz IP, Nefyodov OO. Propoxazepam interaction with cytochromes CYP450 isoforms based on molecular docking analysis. Dop Natl Akad Nauk Ukr. 2023; 3: 96-102. [Ukrainian].
- De Groot MJ, Alex AA, Jones BC. Subtype‐selective targeting of voltage‐gated sodium channels. J Med Chem. 2002; 45(10): 1983-93.
CrossRef
PubMed
U.S. Food and Drug Administration. (2020). In vitro drug interaction studies - cytochrome P450 enzymeand transporter-mediated drug interactions guidance for industry. Retrieved from https://www.fda.gov/media/134582/download
- Golovenko M, Reder A, Larionov V , Andronati S, Aki-sheva A. Cross-species differential plasma protein binding of propoxazepam, a novel analgesic agent. Biopolymer Cell. 2021; 37(6): 459-68.
CrossRef
- Berry LM, Zhao Z. Dynamic modeling of cytochrome P450 inhibition in vitro: Impact of inhibitor depletion on IC50 shift. Drug Metab Dispos. 2013; 41(7):1331-42.
CrossRef
PubMed
- Ferguson CS, Tyndale RF. Cytochrome P450 enzymes in the brain: emerging evidence of biological significance. Trend Pharmac Sci. 2011; 32: 708-16.
CrossRef
PubMed PubMedCentral
- Sachiko Suzuki1, Ami Oguro, Mayuko Osada-Oka, Yoshihiko Funae, Susumu Imaoka. Epoxyeicosatrienoic acids and/or their metabolites promote hypoxic response of cells. J Pharmac Sci. 2008;108:79-88.
CrossRef
PubMed
|