Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

(English title: Physiological Journal)

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2025; 71(3): 53-60


Assessment of appendicular lean mass using basic demographic and anthropometric indices

N.V. Grygorieva, A.S. Musiienko, N.V. Zaverukha, N.M. Koshel, A.V. Pysaruk, D.Yu. Kurylo, A.V. Iniushyna

  1. State Institution “D.F. Chebotarev Institute of Gerontology National Academy of Medical Sciences of Ukraine”, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz71.03.053


Abstract

With age, people experience a gradual loss of muscle mass and strength, known as sarcopenia (SP). The essential criteria for confirming an SP are low appendicular lean mass (ALM) or its index (ALMI), most commonly measured using dual-energy X-ray absorptiometry (DXA). The availability of DXA in Ukraine remains limited, creating an urgent need for simple and accessible screening methods for low ALM. The aim was to develop and cross-validate equations for estimating ALM based on the simple demographic and anthropometric parameters in the Ukrainian population to enhance SP' s diagnostic efficiency. This retrospective study analyzed data from 1,710 subjects (1,546 women and 164 men) aged 60 years or older. Skeletal muscle mass was measured using DXA (DISCOVERY Wi, Hologic, Inc., USA). The stepwise multiple linear regression method was used to develop the ALM equations, with ALM as the dependent variable and anthropometric and demographic indices as independent variables. The most optimal formulas for the Ukrainian population aged 60+ were the next: predicted ALM (men) = 0.191 × weight (kg) + 0.141 × height (cm) – 0.077 × age (years) – 9.406 (Coefficient of determination (R²) = 0.71, standard error of estimate (SEE) = 2.5 kg); ALM (women) = 0.161 × weight (kg) + 0.089 × height (cm) – 0.013 × age (years) – 7.067 (R² = 0.71, SEE = 1.68 kg). The developed equations are simple and do not require complicated measurements. They are highly informative and can be effectively used in primary healthcare settings for SP screening to identify patients at risk.

Keywords: appendicular lean mass; skeletal muscle mass; sarcopenia; prediction equation

References

  1. Etienne J, Liu C, Skinner CM, Conboy MJ, Conboy IM. Skeletal muscle as an experimental model of choice to study tissue aging and rejuvenation. Skelet Muscle. 2020;10:1-16. CrossRef CrossRef PubMed PubMedCentral
  2. Cruz-Jentoft AJ, Gonzalez MC, Prado CM. Sarcopenia ≠ low muscle mass. Eur Geriatr Med. 2023;14:225-8. https:// CrossRef CrossRef PubMed
  3. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing. 2019;48:16-31. CrossRef CrossRef PubMed PubMedCentral
  4. Peng P, Wu J, Fang W, Tian J, He M, Xiao F, et al. Association between sarcopenia and osteoarthritis among the US adults: a cross-sectional study. Sci Rep. 2024;14:1- 8. CrossRef CrossRef PubMed PubMedCentral
  5. Najm A, Niculescu AG, Grumezescu AM, Beuran M. Emerging Therapeutic strategies in sarcopenia: An updated review on pathogenesis and treatment advances. Int J Mol Sci. 2024;25:2-26. CrossRef CrossRef PubMed PubMedCentral
  6. Abdalla PP, da Silva LSL, Venturini ACR, Júnior MFT, Schneider G, dos Santos AP, et al. Anthropometric equations to estimate appendicular muscle mass from dual-energy X-ray absorptiometry (DXA): A scoping review. Arch Gerontol Geriatr. 2023;110:1-9. https://doi. org/10.1016/j.archger.2023.104972. CrossRef PubMed
  7. Wen X, Wang M, Jiang CM, Zhang YM. Anthropometric equation for estimation of appendicular skeletal muscle mass in Chinese adults. Asia Pac J Clin Nutr. 2011;20:551-6.
  8. Messina C, Albano D, Gitto S, Tofanelli L, Bazzocchi A, Ulivieri FM, et al. Body composition with dual energy X-ray absorptiometry: From basics to new tools. Quant Imag Med Surg. 2020;10:1687-98. https://doi. org/10.21037/QIMS.2020.03.02. CrossRef PubMed PubMedCentral
  9. Kawakami R, Miyachi M, Tanisawa K, Ito T, Usui C, Midorikawa T, et al. Development and validation of a simple anthropometric equation to predict appendicular skeletal muscle mass. Clin Nutr. 2021;40:5523-30. https:// CrossRef CrossRef PubMed
  10. Handayani MDN, Sadewa AH, Farmawati A, Rochmah W. Anthropometric prediction equations for estimating muscle mass of elderly women. J Kesehat Masy. 2018;14:195-204. CrossRef CrossRef
  11. Ngoc Nguyen T. Correlating calculated muscle mass with other components of sarcopenia in older hospitalized patients. Gerontol Geriatr Med. 2020;6:1-6. https://doi. org/10.24966/ggm-8662/100061. CrossRef
  12. Tarigan AK, Pujonarti SA, Jahari AB. Prediction model of appendicular muscle mass using mid-thigh circumference, calf circumference, and Mid-upper Arm Circumference in Community-dwelling Elderly in Indonesia. Ind J Publ Health Res Develop. 2020;11:590-4. https://doi. org/10.37506/ijphrd.v11i5.9395.
  13. Wu P, Chen L, Jin J, Zhang Y, Su C, Wu C, et al. Estimation of appendicular skeletal muscle: Development and validation of anthropometric prediction equations in Chinese patients with knee osteoarthritis. Austral J Ageing 2020;39:e119-26. CrossRef CrossRef
  14. Tankó LB, Movsesyan L, Mouritzen U, Christiansen C, Svendsen OL. Appendicular lean tissue mass and the prevalence of sarcopenia among healthy women. Metabolism. 2002;51:69-74. CrossRef meta.2002.28960. CrossRef PubMed
  15. Rathnayake N, Alwis G, Lenora J LS. Development and cross-validation of anthropometric predictive models to estimate the appendicular skeletal muscle mass in middleaged women in Sri Lanka. Ind J Med Res. 2019;150:297- 305. CrossRef.IJMR_1961_17. CrossRef.IJMR_1961_17 PubMed PubMedCentral
  16. Hsiao MY , Chang KV , Wu WT, Huang KC, Han DS. Grip strength and demographic variables estimate appendicular muscle mass better than bioelectrical impedance in Taiwanese older persons. J Am Med Dir Assoc. 2021;22:760-5. CrossRef CrossRef PubMed
  17. Li Q, Cheng H, Cen W, Yang T, Tao S. Development and validation of a predictive model for the risk of sarcopenia in the older adults in China. Eur J Med Res. 2024;29:1-14. CrossRef CrossRef PubMed PubMedCentral
  18. Do Espírito Santo RC, Filippin LI, Lora PS, Xavier RM. Development of new adjusted equations to estimate the skeletal muscle mass stratified by nutritional status for patients with rheumatoid arthritis: a methodological study. Rev Bras Cineantropometria e Desempenho Hum. 2021;23. N.V . Grygorieva, A.S. Musiienko, N.V . Zaverukha, N.M. Koshel, A.V . Pysaruk, D.Yu. Kurylo, A.V . Iniushyna 60 CrossRef CrossRef
  19. Powell R, de Lucia Rolfe E, Day FR, Perry JRB, Griffin SJ, Forouhi NG, et al. Development and validation of total and regional body composition prediction equations from anthropometry and single frequency segmental bioelectrical impedance with DEXA. MedRxiv. 2020; 44:1-15. https://doi.org/CrossRef 16.20248330. CrossRef
  20. Venturini ACR, Abdalla PP, Santos AP Dos, Alves TC, Carvalho ADS, Mota JAPS, et al. Population specificity affects prediction of appendicular lean tissues for diagnosed sarcopenia: A cross-sectional study. Nutr Hosp. 2020;37:776-85. CrossRef CrossRef
  21. Gomes Ic, Gobbo La, Silva Am, Freitas Junior If, Duarte Yao, Marucci Mfn, et al. Appendicular Lean soft tissue: development and cross-validation of predictive models for older men and women. J Frailty Aging. 2013;2:62-7. CrossRef CrossRef PubMed
  22. Kulkarni B, Kuper H, Taylor A, Wells JC, Radhakrishna K V, Kinra S, et al. Development and validation of anthropometric prediction equations for estimation of lean body mass and appendicular lean soft tissue in Indian men and women. J Appl Physiol. 2013;115:1156-62. https://doi. org/10.1152/japplphysiol.00777.2013. CrossRef PubMed PubMedCentral

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2025.