Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

(English title: Physiological Journal)

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2025; 71(3): 26-36


Early mechanisms of microangiopathy development and the effect of cellular protein kinase blockade in experimental diabetic retinopathy

K.O. Usenko, S.O. Rykov, V.V. Likhodievsky, S.V. Ziablitsev

  1. Bogomolets National Medical University, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz71.03.026


Abstract

Among the molecular mechanisms of diabetic microangi- opathy development, the key is the activation of glia, which is accompanied by the formation of specific markers: S100 protein, glial fibrillary acidic protein (GFAP), and vascular endothelial growth factor (VEGF). The aim of the study was to establish the early mechanisms of diabetic microangiopathy development and the effect of cellular protein kinase blockade on it. Diabetic retinopathy was modeled in male Wistar rats by a single injection of streptozotocin (50 mg/kg). Rats were divided into 3 groups: control, with insulin injection (30 U), and with insulin and sorafenib injection (55 mg/kg. Immunohistochemical (for all markers) and immunoblotting (for GFAP) studies were performed. Ultrathin sections of the retina were examined using a PEM 125k microscope . An increase in the expression of all markers was found in the processes of Müller cells and astrocytes that formed muff-like plexuses around microaneurysms and newly formed capillaries. There was a sequence of marker activation: first, the expression of the S100 protein (astrocytic reaction) increased, then GFAP (involvement of Müller cells and reactive gliosis), and in the late period, VEGF, which caused the activation of pathological angiogenesis. Inhibi- tion of the development of microangiopathy was established when blocking cellular protein kinases with sorafenib, which was associated with the suppression of the expression of the studied markers.

Keywords: diabetic retinopathy, microangiopathy, reactive gliosis, S100, GFAP, VEGF, sorafenib

References

  1. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K, Shaw JE, Bright D, Williams R. IDF Diabetes Atlas Committee. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabet Res Clin Pract. 2019 Nov;157:107843. CrossRef PubMed
  2. Wong TY , Sabanayagam C. Strategies to tackle the global burden of diabetic retinopathy: from epidemiology to artificial intelligence. Ophthalmologica. 2020;243(1):9-20. CrossRef PubMed
  3. Abramoff MD, Fort PE, Han IC, Jayasundera KT, Sohn EH, Gardner TW. Approach for a clinically useful comprehensive classification of vascular and neural aspects of diabetic retinal disease. Invest Ophthalmol Vis Sci. 2018 Jan 1;59(1):519-27. CrossRef PubMed PubMedCentral
  4. Madeira MH, Marques IP, Ferreira S, Tavares D, Santos T, Santos AR, Figueira J, Lobo C, Cunha-Vaz J. Retinal neurodegeneration in different risk phenotypes of diabetic retinal disease. Front Neurosci. 2021 Dec 21;15:800004. CrossRef PubMed PubMedCentral
  5. Wang W, Lo ACY . Diabetic retinopathy: pathophysiology and treatments. Int J Mol Sci. 2018 Jun 20;19(6):1816. CrossRef PubMed PubMedCentral
  6. Whitehead M, Wickremasinghe S, Osborne A, Van Wijn-gaarden P, Martin KR. Diabetic retinopathy: a complex pathophysiology requiring novel therapeutic strategies. Expert Opin Biol Ther. 2018 Dec;18(12):1257-70. CrossRef PubMed PubMedCentral
  7. Sundstrom JM, Hernández C, Weber SR, Zhao Y , Dunkle-barger M, Tiberti N, Laremore T, Simó-Servat O, GarciaRamirez M, Barber AJ, Gardner TW, Simó R. Proteomic analysis of early diabetic retinopathy reveals mediators of neurodegenerative brain diseases. Invest Ophthalmol Vis Sci. 2018 May 1;59(6):2264-74. CrossRef PubMed PubMedCentral
  8. Sorrentino FS, Allkabes M, Salsini G, Bonifazzi C, Perri P. The importance of glial cells in the homeostasis of the retinal microenvironment and their pivotal role in the course of diabetic retinopathy. Life Sci. 2016;162:54-9. CrossRef PubMed
  9. Mohammad G, Kowluru RA. Diabetic retinopathy and signaling mechanism for activation of matrix metalloproteinase-9. J Cell Physiol. 2012 Mar;227(3):1052-61. CrossRef PubMed PubMedCentral
  10. Wu C, Xu K, Liu W, Liu A, Liang H, Li Q, Feng Z, Yang Y , Ding J, Zhang T, Liu Y , Liu X, Zuo Z. Protective effect of Raf-1 kinase inhibitory protein on diabetic retinal neurodegeneration through P38-MAPK pathway. Curr Eye Res. 2022 Jan;47(1):135-42. CrossRef PubMed
  11. Yu YY , Liu QP, Li MT, An P, Chen YY , Luan X, Lv C, Zhang H, Hu-Zhang-Qing-Mai-Yin. Inhibits proliferation of human retinal capillary endothelial cells exposed to high glucose. Front Pharmacol. 2021 Aug 6;12:732655. CrossRef PubMed PubMedCentral
  12. Kernt M, Liegl RG, Rueping J, Neubauer AS, Haritoglou C, Lackerbauer CA, Eibl KH, Ulbig MW, Kampik A. Sorafenib protects human optic nerve head astrocytes from light-induced overexpression of vascular endothelial growth factor, platelet-derived growth factor, and placenta growth factor. Growth Factor. 2010 Jun;28(3):211-20. doi: 10.3109/08977191003604505. К.О. Усенко, С.О. Риков, В.В. Ліходієвський, С.В. Зябліцев 36 CrossRef PubMed
  13. Ziablitzev SV , Zhupan DB, Dyadyk OO. The influence of a benzodiazepine receptor agonist on the state of glia in the diabetic retinopathy. Fiziol Zh. 2023;69(6):33-42. [Ukrainian]. CrossRef
  14. Ziablitsev SV , Zhupan DB, Tykhomyrov AO, Dyadyk OO. Benzodiazepine receptor agonist Carbacetam modulates the level of vascular endothelial growth factor in the retina of rats with streptozotocin-induced diabetes. Ukr Biochem J. 2023;6(95):21-9. CrossRef
  15. Mikheytseva IM, Molchanuk NI, Amayed A, Kolomiichuk SG, Siroshtanenko TI. Features of ultrastructural changes in the neurosensory elements of the retina of rats in the modeling of diabetic retinopathy on the background of axial myopia. Fiziol Zh. 2024; 70(1): 31-6. [Ukrainian]. CrossRef
  16. Tykhomyrov АA, Pavlova AS, Nedzvetsky VS. Glial fibrillary acidic protein (GFAP): on the 45th Anniversary of its discovery. Neurophysiology. 2016:48;54-71. CrossRef
  17. Ziablitsev SV , V odianyk VV , Dyadyk OO. The infuen ce of tyrosine protein kinases blockade on the vasculonedothelial growth factor expression and diabetic retinopathy development. Fiziol Zh. 2023;69(5):22-32. [Ukrainian]. CrossRef
  18. Duh EJ, Sun JK, Stitt AW. Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. JCI Insight. 2017 Jul 20;2(14):e93751. CrossRef PubMed PubMedCentral
  19. Mikheytseva IM. Current view on pathogenic mechanisms of diabetic retinopathy. Fiziol Zh. 2023; 69(3): 106-14. [Ukrainian]. CrossRef
  20. Nian S, Lo ACY , Mi Y , Ren K, Yang D. Neurovascular unit in diabetic retinopathy: pathophysiological roles and potential therapeutical targets. Eye Vis (Lond). 2021 May 1;8(1):15. CrossRef PubMed PubMedCentral
  21. Simó R, Simó-Servat O, Bogdanov P, Hernández C. Neurovascular unit: A new target for treating early stages of diabetic retinopathy. Pharmaceutics. 2021 Aug 23;13(8):1320. CrossRef PubMed PubMedCentral
  22. Van Hove I, De Groef L, Boeckx B, Modave E, Hu TT, Beets K, Etienne I, Van Bergen T, Lambrechts D, Moons L, Feyen JHM, Porcu M. Single-cell transcriptome analysis of the Akimba mouse retina reveals celltype-specific insights into the pathobiology of diabetic retinopathy. Diabetologia. 2020 Oct;63(10):2235-48. CrossRef PubMed
  23. Lim RR, Vaidya T, Gadde SG, Yadav NK, Sethu S, Hainsworth DP, Mohan RR, Ghosh A, Chaurasia SS. Correlation between systemic S100A8 and S100A9 levels and severity of diabetic retinopathy in patients with type 2 diabetes mellitus. Diabet Metab Syndr. 2019 Mar-Apr;13(2):1581-9. CrossRef PubMed
  24. Franco-Martínez L, Gelemanović A, Horvatić A, Contreras-Aguilar MD, Mrljak V , Cerón JJ, MartínezSubiela S, Tvarijonaviciute A. The serum and saliva proteome of dogs with diabetes mellitus. Animals (Basel). 2020 Dec 1;10(12):2261. CrossRef PubMed PubMedCentral
  25. Crespo-Garcia S, Tsuruda PR, Dejda A, Ryan RD, Fournier F, Chaney SY, Pilon F, Dogan T, et al. Pathological angiogenesis in retinopathy engages cellular senescence and is amenable to therapeutic elimination via BCL-xL inhibition. Cell Metab. 2021 Apr 6;33(4):818-32.e7. CrossRef PubMed
  26. Pitale PM, Gorbatyuk MS. Diabetic retinopathy: From animal models to cellular signaling. Int J Mol Sci. 2022 Jan 27;23(3):1487. CrossRef PubMed PubMedCentral
  27. Podkowinski D, Orlowski-Wimmer E, Zlabinger G, Pollreisz A, Mursch-Edlmayr AS, Mariacher S, Ring M, Bolz M. Aqueous humour cytokine changes during a loading phase of intravitreal ranibizumab or dexamethasone implant in diabetic macular oedema. Acta Ophthalmol. 2020 Jun;98(4):e407-15. CrossRef PubMedCentral
  28. Mehrabadi ME, Salemi Z, Babaie S, Panahi M. Effect of biochanin a on retina levels of vascular endothelial growth factor, tumor necrosis factor-alpha and interleukin-1beta in rats with streptozotocin-induced diabetes. Can J Diabet. 2018 Dec;42(6):639-44. CrossRef PubMed
  29. Maturi RK, Glassman AR, Josic K, Antoszyk AN, Blodi BA, Jampol LM, Marcus DM, Martin DF, Melia M, Salehi-Had H, Stockdale CR, Punjabi OS, Sun JK. DRCR Retina Network. Effect of intravitreous antivascular endothelial growth factor vs sham treatment for prevention of vision-threatening complications of diabetic retinopathy: The protocol W randomized clinical trial. JAMA Ophthalmol. 2021 Jul 1;139(7):701-12. CrossRef PubMed PubMedCentral
  30. Virgili G, Parravano M, Evans JR, Gordon I, Lucenteforte E. Anti-vascular endothelial growth factor for diabetic macular oedema: a network meta-analysis. Cochrane Database Syst Rev. 2018 Oct 16;10(10):CD007419. CrossRef PubMed

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2025.