Early mechanisms of microangiopathy development and the effect of cellular protein kinase blockade in experimental diabetic retinopathy
K.O. Usenko, S.O. Rykov, V.V. Likhodievsky, S.V. Ziablitsev
- Bogomolets National Medical University, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz71.03.026

Abstract
Among the molecular mechanisms of diabetic microangi-
opathy development, the key is the activation of glia, which
is accompanied by the formation of specific markers: S100
protein, glial fibrillary acidic protein (GFAP), and vascular
endothelial growth factor (VEGF). The aim of the study was
to establish the early mechanisms of diabetic microangiopathy
development and the effect of cellular protein kinase blockade
on it. Diabetic retinopathy was modeled in male Wistar rats
by a single injection of streptozotocin (50 mg/kg). Rats were divided into 3 groups: control, with insulin injection (30 U),
and with insulin and sorafenib injection (55 mg/kg. Immunohistochemical (for all markers) and immunoblotting (for GFAP) studies were performed. Ultrathin sections
of the retina were examined using a PEM 125k microscope
. An increase in the expression of all markers was found in the processes of Müller cells and astrocytes
that formed muff-like plexuses around microaneurysms and
newly formed capillaries. There was a sequence of marker
activation: first, the expression of the S100 protein (astrocytic reaction) increased, then GFAP (involvement of Müller cells
and reactive gliosis), and in the late period, VEGF, which
caused the activation of pathological angiogenesis. Inhibi-
tion of the development of microangiopathy was established
when blocking cellular protein kinases with sorafenib, which
was associated with the suppression of the expression of the
studied markers.
Keywords:
diabetic retinopathy, microangiopathy, reactive gliosis, S100, GFAP, VEGF, sorafenib
References
- Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K, Shaw JE, Bright D, Williams R. IDF Diabetes Atlas Committee. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabet Res Clin Pract. 2019 Nov;157:107843.
CrossRef
PubMed
- Wong TY , Sabanayagam C. Strategies to tackle the global burden of diabetic retinopathy: from epidemiology to artificial intelligence. Ophthalmologica. 2020;243(1):9-20.
CrossRef
PubMed
- Abramoff MD, Fort PE, Han IC, Jayasundera KT, Sohn EH, Gardner TW. Approach for a clinically useful comprehensive classification of vascular and neural aspects of diabetic retinal disease. Invest Ophthalmol Vis Sci. 2018 Jan 1;59(1):519-27.
CrossRef
PubMed PubMedCentral
- Madeira MH, Marques IP, Ferreira S, Tavares D, Santos T, Santos AR, Figueira J, Lobo C, Cunha-Vaz J. Retinal neurodegeneration in different risk phenotypes of diabetic retinal disease. Front Neurosci. 2021 Dec 21;15:800004.
CrossRef
PubMed PubMedCentral
- Wang W, Lo ACY . Diabetic retinopathy: pathophysiology and treatments. Int J Mol Sci. 2018 Jun 20;19(6):1816.
CrossRef
PubMed PubMedCentral
- Whitehead M, Wickremasinghe S, Osborne A, Van Wijn-gaarden P, Martin KR. Diabetic retinopathy: a complex pathophysiology requiring novel therapeutic strategies. Expert Opin Biol Ther. 2018 Dec;18(12):1257-70.
CrossRef
PubMed PubMedCentral
- Sundstrom JM, Hernández C, Weber SR, Zhao Y , Dunkle-barger M, Tiberti N, Laremore T, Simó-Servat O, GarciaRamirez M, Barber AJ, Gardner TW, Simó R. Proteomic analysis of early diabetic retinopathy reveals mediators of neurodegenerative brain diseases. Invest Ophthalmol Vis Sci. 2018 May 1;59(6):2264-74.
CrossRef
PubMed PubMedCentral
- Sorrentino FS, Allkabes M, Salsini G, Bonifazzi C, Perri P. The importance of glial cells in the homeostasis of the retinal microenvironment and their pivotal role in the course of diabetic retinopathy. Life Sci. 2016;162:54-9.
CrossRef
PubMed
- Mohammad G, Kowluru RA. Diabetic retinopathy and signaling mechanism for activation of matrix metalloproteinase-9. J Cell Physiol. 2012 Mar;227(3):1052-61.
CrossRef
PubMed PubMedCentral
- Wu C, Xu K, Liu W, Liu A, Liang H, Li Q, Feng Z, Yang Y , Ding J, Zhang T, Liu Y , Liu X, Zuo Z. Protective effect of Raf-1 kinase inhibitory protein on diabetic retinal neurodegeneration through P38-MAPK pathway. Curr Eye Res. 2022 Jan;47(1):135-42.
CrossRef
PubMed
- Yu YY , Liu QP, Li MT, An P, Chen YY , Luan X, Lv C, Zhang H, Hu-Zhang-Qing-Mai-Yin. Inhibits proliferation of human retinal capillary endothelial cells exposed to high glucose. Front Pharmacol. 2021 Aug 6;12:732655.
CrossRef
PubMed PubMedCentral
Kernt M, Liegl RG, Rueping J, Neubauer AS, Haritoglou C, Lackerbauer CA, Eibl KH, Ulbig MW, Kampik A. Sorafenib protects human optic nerve head astrocytes from light-induced overexpression of vascular endothelial growth factor, platelet-derived growth factor, and placenta growth factor. Growth Factor. 2010 Jun;28(3):211-20. doi: 10.3109/08977191003604505. К.О. Усенко, С.О. Риков, В.В. Ліходієвський, С.В. Зябліцев 36
CrossRef
PubMed
- Ziablitzev SV , Zhupan DB, Dyadyk OO. The influence of a benzodiazepine receptor agonist on the state of glia in the diabetic retinopathy. Fiziol Zh. 2023;69(6):33-42. [Ukrainian].
CrossRef
- Ziablitsev SV , Zhupan DB, Tykhomyrov AO, Dyadyk OO. Benzodiazepine receptor agonist Carbacetam modulates the level of vascular endothelial growth factor in the retina of rats with streptozotocin-induced diabetes. Ukr Biochem J. 2023;6(95):21-9.
CrossRef
- Mikheytseva IM, Molchanuk NI, Amayed A, Kolomiichuk SG, Siroshtanenko TI. Features of ultrastructural changes in the neurosensory elements of the retina of rats in the modeling of diabetic retinopathy on the background of axial myopia. Fiziol Zh. 2024; 70(1): 31-6. [Ukrainian].
CrossRef
- Tykhomyrov АA, Pavlova AS, Nedzvetsky VS. Glial fibrillary acidic protein (GFAP): on the 45th Anniversary of its discovery. Neurophysiology. 2016:48;54-71.
CrossRef
- Ziablitsev SV , V odianyk VV , Dyadyk OO. The infuen ce of tyrosine protein kinases blockade on the vasculonedothelial growth factor expression and diabetic retinopathy development. Fiziol Zh. 2023;69(5):22-32. [Ukrainian].
CrossRef
- Duh EJ, Sun JK, Stitt AW. Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. JCI Insight. 2017 Jul 20;2(14):e93751.
CrossRef
PubMed PubMedCentral
- Mikheytseva IM. Current view on pathogenic mechanisms of diabetic retinopathy. Fiziol Zh. 2023; 69(3): 106-14. [Ukrainian].
CrossRef
- Nian S, Lo ACY , Mi Y , Ren K, Yang D. Neurovascular unit in diabetic retinopathy: pathophysiological roles and potential therapeutical targets. Eye Vis (Lond). 2021 May 1;8(1):15.
CrossRef
PubMed PubMedCentral
- Simó R, Simó-Servat O, Bogdanov P, Hernández C. Neurovascular unit: A new target for treating early stages of diabetic retinopathy. Pharmaceutics. 2021 Aug 23;13(8):1320.
CrossRef
PubMed PubMedCentral
- Van Hove I, De Groef L, Boeckx B, Modave E, Hu TT, Beets K, Etienne I, Van Bergen T, Lambrechts D, Moons L, Feyen JHM, Porcu M. Single-cell transcriptome analysis of the Akimba mouse retina reveals celltype-specific insights into the pathobiology of diabetic retinopathy. Diabetologia. 2020 Oct;63(10):2235-48.
CrossRef
PubMed
- Lim RR, Vaidya T, Gadde SG, Yadav NK, Sethu S, Hainsworth DP, Mohan RR, Ghosh A, Chaurasia SS. Correlation between systemic S100A8 and S100A9 levels and severity of diabetic retinopathy in patients with type 2 diabetes mellitus. Diabet Metab Syndr. 2019 Mar-Apr;13(2):1581-9.
CrossRef
PubMed
- Franco-Martínez L, Gelemanović A, Horvatić A, Contreras-Aguilar MD, Mrljak V , Cerón JJ, MartínezSubiela S, Tvarijonaviciute A. The serum and saliva proteome of dogs with diabetes mellitus. Animals (Basel). 2020 Dec 1;10(12):2261.
CrossRef
PubMed PubMedCentral
- Crespo-Garcia S, Tsuruda PR, Dejda A, Ryan RD, Fournier F, Chaney SY, Pilon F, Dogan T, et al. Pathological angiogenesis in retinopathy engages cellular senescence and is amenable to therapeutic elimination via BCL-xL inhibition. Cell Metab. 2021 Apr 6;33(4):818-32.e7.
CrossRef
PubMed
- Pitale PM, Gorbatyuk MS. Diabetic retinopathy: From animal models to cellular signaling. Int J Mol Sci. 2022 Jan 27;23(3):1487.
CrossRef
PubMed PubMedCentral
- Podkowinski D, Orlowski-Wimmer E, Zlabinger G, Pollreisz A, Mursch-Edlmayr AS, Mariacher S, Ring M, Bolz M. Aqueous humour cytokine changes during a loading phase of intravitreal ranibizumab or dexamethasone implant in diabetic macular oedema. Acta Ophthalmol. 2020 Jun;98(4):e407-15.
CrossRef
PubMedCentral
- Mehrabadi ME, Salemi Z, Babaie S, Panahi M. Effect of biochanin a on retina levels of vascular endothelial growth factor, tumor necrosis factor-alpha and interleukin-1beta in rats with streptozotocin-induced diabetes. Can J Diabet. 2018 Dec;42(6):639-44.
CrossRef
PubMed
- Maturi RK, Glassman AR, Josic K, Antoszyk AN, Blodi BA, Jampol LM, Marcus DM, Martin DF, Melia M, Salehi-Had H, Stockdale CR, Punjabi OS, Sun JK. DRCR Retina Network. Effect of intravitreous antivascular endothelial growth factor vs sham treatment for prevention of vision-threatening complications of diabetic retinopathy: The protocol W randomized clinical trial. JAMA Ophthalmol. 2021 Jul 1;139(7):701-12.
CrossRef
PubMed PubMedCentral
- Virgili G, Parravano M, Evans JR, Gordon I, Lucenteforte E. Anti-vascular endothelial growth factor for diabetic macular oedema: a network meta-analysis. Cochrane Database Syst Rev. 2018 Oct 16;10(10):CD007419.
CrossRef
PubMed
|