The Effect of the CDK5 Inhibitor Roscovitine on the Viability of Rat Hippocampal Neurons in Culture In Vitro
N.M. Rozumna1, V.V. Hanzha1, O.O. Lukyanets1
- Bogomoletz Institute of Physiology, NAS of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz71.02.018

Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder that causes problems with memory, thinking, and
behavior. Currently, there are no medications available to prevent or eliminate the pathological phenomena of this disease,
but symptomatic treatment is used, which can improve the
patient’s condition. In this context, the aim of our study was to
investigate the effect of roscovitine, a selective inhibitor of the
neuron-specific kinase CDK5, on the viability of hippocampal
neuronal cultures. CDK5 plays an important role in maintain-
ing the structure and function of neurons, including synaptic
plasticity and cytoskeletal integrity. Therefore, the study of
the neuroprotective effect of roscovitine opens the way for its
potential application in the treatment of neurodegenerative
diseases, particularly AD. The study was conducted on rat
hippocampal neuron cultures using double staining of cells
with two DNA-binding dyes (Hoechst 33258 and propidium
iodide). Neuronal viability was assessed via confocal laser
scanning microscopy by comparing cell fluorescence under
control conditions and after 24 hours of incubation with
roscovitine. The results showed that roscovitine had minimal
effects on neurons viability under normal conditions, causing
only a slight increase in apoptosis and necrosis compared to
controls, indicating its low toxicity on cells. Thus, our study
highlights the importance of evaluating roscovitine’s effects
for use in a cellular model of AD and determining its potential
to counteract amyloid-beta-induced neurodegeneration
Keywords:
roscovitine, CDK5, neurodegenerative diseases, Alzheimer’s disease, hippocampal cell culture, apoptosis, necrosis
References
- Tyshchenko YN, Lukyanetz EA. Role of mitochondrial disfunction in the development of alzheimer's disease. Fiziol Zh 2020;66(6):88-96. doi: 10.15407/FZ66.06.088.
CrossRef
- Ganzha VV , Lukyanetz EA. The role of beta-amyloid in norm and at alzheimer's disease. Fiziol Zh 2021;67(1):57- 66. doi: 10.15407/fz67.01.057.
CrossRef
- Zhang Y, Chen H, Li R, Sterling K, Song W. Amy-loid β-based therapy for Alzheimer's disease: challenges, successes and future. Sig Transduct Target Ther 2023;8(1):248. doi: 10.1038/s41392-023-01484-7.
CrossRef
PubMed PubMedCentral
- WHO. Global action plan on the public health response to dementia 2017 - 2025 2017. https://iris.who.int/ bitstream/handle/10665/259615/9789241513487-eng. pdf?sequence=1.
- Sharma K. Cholinesterase inhibitors as Alzheimer's thera-peutics (Review). Mol Med Rep. 2019;20(2):1479-87. doi: 10.3892/mmr.2019.10374.
CrossRef
PubMed PubMedCentral
- Patrick GN, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai LH. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature. 1999;402(6762):615-22. doi: 10.1038/45159.
CrossRef
PubMed
- Cruz JC, Tseng HC, Goldman JA, Shih H, Tsai LH. Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron. 2003;40(3):471-83. doi: 10.1016/s0896- 6273(03)00627-5.
CrossRef
PubMed
- Martin SP , Leeman-Markowski BA. Proposed mechanisms of tau: relationships to traumatic brain injury, Alzheimer's disease, and epilepsy. Front Neurol 2024;14. doi: 10.3389/ fneur.2023.1287545.
CrossRef
PubMed PubMedCentral
- Hirokawa T, Horie T, Fukiyama Y, Mimura M, Takai S, Kida T, Oku H. Roscovitine, a cyclin-dependent kinase-5 inhibitor, decreases phosphorylated tau formation and death of retinal ganglion cells of rats after optic nerve crush. Int J Mol Sci. 2021;22(15). doi: 10.3390/ ijms22158096.
CrossRef
PubMed PubMedCentral
- Sánchez-Martínez C, Gelbert LM, Lallena MJ, de Dios A. Cyclin dependent kinase (CDK) inhibitors as anticancer drugs. Bioorg Med Chem Lett. 2015;25(17):3420-35. doi: 10.1016/j.bmcl.2015.05.100.
CrossRef
PubMed
- Sava GP, Fan H, Coombes RC, Buluwela L, Ali S. CDK7 inhibitors as anticancer drugs. Cancer Metastas Rev. 2020;39(3):805-23. doi: 10.1007/s10555-020-09885-8.
CrossRef
PubMed PubMedCentral
- Mushtaq G, Greig NH, Anwar F, Al-Abbasi FA, Zamzami MA, Al-Talhi HA, Kamal MA. Neuroprotective mechanisms mediated by CDK5 inhibition. Curr Pharm Des. 2016;22(5):527-34. doi: 10.2174/1381612822666151124235028.
CrossRef
PubMed PubMedCentral
- Lui A, Vanleuven J, Perekopskiy D, Liu D, Xu D, Alzayat O, Elgokhy T, Do T, Gann M, Martin R, Liu D-Z. FDA-approved kinase inhibitors in preclinical and clinical trials for neurological disorders. Pharmaceuticals. 2022;15(12):1546.
CrossRef
PubMed PubMedCentral
- Tian Z, Feng B, Wang XQ, Tian J. Focusing on cyclin-dependent kinases 5: A potential target for neurological disorders. Front Mol Neurosci. 2022;15:1030639. doi: 10.3389/fnmol.2022.1030639.
CrossRef
PubMed PubMedCentral
- Hanzha VV , Rozumna NM, Kravenska YV , Spivak MY , Lukyanetz EA. The effect of cerium dioxide nanoparticles on the viability of hippocampal neurons in Alzheimer's disease modeling. Front Cell Neurosci. 2023;17:1131168. doi: 10.3389/fncel.2023.1131168.
CrossRef
PubMed PubMedCentral
- Rozumna NM, Hanzha VV, Lukyanetz EA. Meman-tine protects the cultured rat hippocampal neurons treated by NMDA and amyloid β1-42. Front Neurosci. 2023;17:1269664. doi: 10.3389/fnins.2023.1269664.
CrossRef
PubMed PubMedCentral
- Sangweni NF, Dludla PV , Chellan N, Mabasa L, Sharma JR, Johnson R. The implication of low dose dimethyl sulfoxide on mitochondrial function and oxidative damage in cultured cardiac and cancer cells. Molecules. 2021;26(23):7305. doi: 10.3390/molecules26237305.
CrossRef
PubMed PubMedCentral
- Dhavan R, Tsai L-H. A decade of CDK5. Nat Rev Mol Cell Biol. 2001;2(10):749-59. doi: 10.1038/35096019.
CrossRef
PubMed
- Hawasli AH, Bibb JA. Alternative roles for Cdk5 in learn-Н.М. Розумна, В.В. Ганжа, О.О. Лук'янець 24 ing and synaptic plasticity. Biotechnol J. 2007;2(8):941-8. doi: 10.1002/biot.200700093.
CrossRef
PubMed
- Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9(3):153-66. doi: 10.1038/nrc2602.
CrossRef
PubMed
- Merce P, Anna MC, Ester V , Clemens A, Susana Garcia de A, Daniel A, Francesc XS, Antoni C. Inhibitors of cyclin-dependent kinases: potential drugs for the treatment of neurodegenerative disorders? Curr Med Chem - Central Nervous System Agents. 2005;5(2):101-9. doi: 10.2174/1568015054022371.
CrossRef
- Law ME, Corsino PE, Narayan S, Law BK. Cyclin-depen-dent kinase inhibitors as anticancer therapeutics. Mol Pharmacol. 2015;88(5):846-52. doi: 10.1124/mol.115.099325.
CrossRef
PubMed PubMedCentral
- Liu J, Yang J, Xu Y , Guo G, Cai L, Wu H, Zhao Y , Zhang X. Roscovitine, a CDK5 inhibitor, alleviates sevofluraneinduced cognitive dysfunction via regulation tau/ GSK3β and ERK/PPARγ/CREB signaling. Cell Physiol Biochem. 2017;44(2):423-35. doi: 10.1159/000485008.
CrossRef
PubMed
- Rousselet E, Létondor A, Menn B, Courbebaisse Y , Quillé ML, Timsit S. Sustained (S)-roscovitine delivery promotes neuroprotection associated with functional recovery and decrease in brain edema in a randomized blind focal cerebral ischemia study. J Cereb Blood Flow Metab. 2018;38(6):1070-84. doi: 10.1177/0271678x17712163.
CrossRef
PubMed PubMedCentral
- Le Roy L, Letondor A, Le Roux C, Amara A, Timsit S. Cellular and molecular mechanisms of R/S-roscovitine and CDKs related inhibition under both focal and global cerebral ischemia: a focus on neurovascular unit and immune cells. Cells. 2021;10(1):104.
CrossRef
PubMed PubMedCentral
|