Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2025; 71(1): 102-115


INTERRUPTION OF ION TRANSPORT PROCESSES IN SPERMATOZOA OF INFERTILE MEN

Z.Ya. Fedorovych, M.Z. Vorobets R.V. Fafula

    Danylo Halytsky Lviv National Medical University, Ukraine
DOI: https://doi.org/10.15407/fz71.01.102


Abstract

During the study of the plasma membrane of spermatozoa and its organelles, a great variety of specifically localized ion channels, exchangers, and ATPases was discovered. Although the activity of ion channels and membrane transporters has been studied in detail, their involvement in the mechanisms leading to the dysfunction of male germ cells remains insufficiently elucidated. Numerous scientific works show that the absence of certain transport systems of the plasma membrane due to genetic mutations or their low activity leads to a decrease or loss of sperm motility, morphological changes that worsen the quality of sperm, and is the cause of male infertility. The review examines some ion transport systems that maintain resting membrane potential and ion homeostasis in spermatogenesis. It notes the possibility of using ion channels and membrane transporters as markers to establish the functionality of spermatozoa or as molecular targets for drugs in the treatment of male infertility.

Keywords: transport of ions; spermatozoon; male infertility

References

  1. Austin CR. Observations on the penetration of the sperm into the mammalian egg. Austr J Biol Sci. 1951;4(4):581-96. CrossRef PubMed
  2. Ramal-Sanchez M, Bernabò N, Valbonetti L, Cimini C, Taraschi A, Capacchietti G, Machado-Simoes J, Barboni B. Role and modulation of TRPV1 in mammalian spermatozoa: An updated review. Int J Mol Sci. 2021 Apr 21;22(9):4306. CrossRef PubMed PubMedCentral
  3. Delgado-Bermúdez A, Mateo-Otero Y, Llavanera M, Bonet S, Yeste M, Pinart E. HVCN1 but not potassium channels are related to mammalian sperm cryotolerance. Int J Mol Sci. 2021 Feb 6;22(4):1646. CrossRef PubMed PubMedCentral
  4. Miller MR, Mansell SA, Meyers SA, Lishko PV. Flagellar ion channels of sperm: similarities and differences between species. Cell Calcium. 2015 Jul 1;58(1):105-13. CrossRef PubMed
  5. Wang H, McGoldrick LL, Chung JJ. Sperm ion channels and transporters in male fertility and infertility. Nat Rev Urolog. 2021 Jan;18(1):46-66. CrossRef PubMed PubMedCentral
  6. Sanchez G, Nguyen AN, Timmerberg B, Tash JS, Blanco G. The Na+,K+-ATPase α4 isoform from humans has distinct enzymatic properties and is important for sperm motility. Mol Human Reproduct. 2006 Sep 1;12(9):565-76. CrossRef PubMed
  7. Hlivko JT, Chakraborty S, Hlivko TJ, Sengupta A, James PF. The human Na+,K+-ATPase alpha4 isoform is a ouabainsensitive alpha isoform that is expressed in sperm. Mol Reproduct Dev: Incorp Gamete Res. 2006 Jan;73(1):101-15. CrossRef PubMed
  8. Lestari SW, Miati DN, Seoharso P, Sugiyanto R, Pujianto DA. Sperm Na+,K+-ATPase α4 and plasma membrane Ca2+-ATPase (PMCA) 4 regulation in asthenozoospermia. Syst Biol Reproduct Med. 2017 Sep 3;63(5):294-302. CrossRef PubMed
  9. Jimenez T, Sánchez G, Blanco G. Activity of the Na+,K+- ATPase α4 isoform is regulated during sperm capacitation to support sperm motility. J Androlog. 2012 Sep 10;33(5):1047-57. CrossRef PubMed
  10. Pinto FM, Odriozola A, Candenas L, Subirán N. The role of sperm membrane potential and ion channels in regulating sperm function. Int J Mol Sci. 2023 Apr 10;24(8):6995. CrossRef PubMed PubMedCentral
  11. Calzada L, Tellez J. Defective function of membrane potential (ψ) on sperm of infertile men. Arch Androlog. 1997 Jan 1;38(2):151-5. CrossRef PubMed
  12. Molina LC, Gunderson S, Riley J, Lybaert P, BorregoAlvarez A, Jungheim ES, Santi CM. Membrane potential determined by flow cytometry predicts fertilizing ability of human sperm. Front Cell Dev Biol. 2020 Jan 21;7:387. CrossRef PubMed PubMedCentral
  13. Jimenez T, Sánchez G, Wertheimer E, Blanco G. Activity of the Na+,K+-ATPase A4 isoform is important for membrane potential, intracellular Ca2+, and Ph to maintain motility in rat spermatozoa. Reproduction. 2010;139(5):835-45. CrossRef PubMed
  14. Da Costa R, Botana D, Pinero S, Proverbio F, Marín R. Cadmium inhibits motility, activities of plasma membrane Ca2+-ATP ase and axonemal dynein‐ATP ase of human spermatozoa. Andrologia. 2016 May;48(4):464-9. CrossRef PubMed
  15. Peralta-Arias RD, Vivenes CY, Camejo MI, Pinero S, Proverbio T, Martinez E, Marin R, Proverbio F. ATPases, ion exchangers and human sperm motility. Reproduction. 2015 May 1;149(5):475-84. CrossRef PubMed
  16. Larsen K, Henriksen C, Kristensen KK, Momeni J, Farajzadeh L. Molecular cloning and characterization of porcine Na+/K+-ATPase isoform α4. Biochimie. 2019 Mar 1;158:149-55. CrossRef PubMed
  17. Fafula RV, Vorobets ZD. The relationships between changes in main biochemical parameters in sperm cells of infertile men. Studia Biol, 2019 June;13(1):39-50. CrossRef
  18. Molina LC, Pinto NA, Torres NI, González-Cota AL, Luque GM, Balestrini PA, Romarowski A, Krapf D, Santi CM, Treviño CL, Darszon A. CFTR/ENaC-dependent regulation of membrane potential during human sperm capacitation is initiated by bicarbonate uptake through NBC. J Biol Chem. 2018 Jun 1;293(25):9924-36. CrossRef PubMed PubMedCentral
  19. Gündoğdu AÇ, Kaplanoğlu GT, Ören S, Baykal B, Korkmaz C, Gümüşlü S, Karabacak RO. Impact of 5'-AMPactivated protein kinase (AMPK) on Epithelial Sodium Channels (ENaCs) in human sperm. Tissue Cell. 2022 Oct 1;78:101896. CrossRef PubMed
  20. Kong XB, Ma HG, Li HG, Xiong CL. Blockade of epithelial sodium channels improves sperm motility in asthenospermia patients. Int J Androlog. 2009 Aug;32(4):330-6. CrossRef PubMed
  21. Chauhan DS, Swain DK, Shah N, Yadav HP, Nakade UP, Singh VK, Nigam R, Yadav S, Garg SK. Functional and molecular characterization of voltage gated sodium channel Nav 1.8 in bull spermatozoa. Theriogenology. 2017 Mar 1;90:210-8. CrossRef PubMed
  22. Candenas L, Pinto FM, Cejudo-Román A, GonzálezRavina C, Fernández-Sánchez M, Pérez-Hernández N, Irazusta J, Subirán N. Veratridine-sensitive Na+ channels regulate human sperm fertilization capacity. Life Sci. 2018 Mar 1;196:48-55. CrossRef PubMed
  23. Lyon M, Li P, Ferreira JJ, Lazarenko RM, Kharade SV, Kramer M, McClenahan SJ, Days E, Bauer JA, Spitznagel BD, Weaver CD. A selective inhibitor of the sperm-specific potassium channel SLO3 impairs human sperm function. Proc Natl Acad Sci USA. 2023 Jan 24;120(4):e2212338120. CrossRef PubMed PubMedCentral
  24. Christoph B, Zhou Y, Astrid M, Echeverry FA, Christian T, Ansgar P, Xiao-Ming X, Wolfgang B, Lingle CJ, Benjamin KU, Timo S. The Ca2+-activated K+ current of human sperm is mediated by Slo3. eLife. 2014;3. CrossRef PubMed PubMedCentral
  25. Geng Y, Ferreira JJ, Dzikunu V, Butler A, Lybaert P, Yuan P, Magleby KL, Salkoff L, Santi CM. A genetic variant of the sperm-specific SLO3 K+ channel has altered pH and Ca2+ sensitivities. J Biol Chem. 2017 May 26;292(21):8978-87. CrossRef PubMed PubMedCentral
  26. Wijerathne TD, Kim JH, Kim MJ, Kim CY, Chae MR, Lee SW, Lee KP. Onion peel extract and its constituent, quercetin inhibits human Slo3 in a pH and calcium dependent manner. Korean J Physiol Pharm. 2019 Sep 1;23(5): 381-92. CrossRef PubMed PubMedCentral
  27. Brown SG, Publicover SJ, Mansell SA, Lishko PV, Williams HL, Ramalingam M, Wilson SM, Barratt CL, Sutton KA, Da Silva SM. Depolarization of sperm membrane potential is a common feature of men with subfertility and is associated with low fertilization rate at IVF. Human Reproduct. 2016 Jun 1;31(6):1147-57. CrossRef PubMed PubMedCentral
  28. Gao T, Li K, Liang F, Yu J, Liu A, Ni Y, Sun P. KCNQ1 potassium channel expressed in human sperm is involved in sperm motility, acrosome reaction, protein tyrosine phosphorylation, and ion homeostasis during capacitation. Front Physiol. 2021 Oct 22;12:761910. CrossRef PubMed PubMedCentral
  29. Delgado-Bermúdez A, Yeste M, Bonet S, Pinart E. Physiological role of potassium channels in mammalian germ cell differentiation, maturation, and capacitation. Andrology. 2024 Mar 4;1-18. CrossRef PubMed
  30. Pedersen SF, Counillon L. The SLC9A-C mammalian Na+/H+ exchanger family: molecules, mechanisms, and physiology. Physiol Rev. 2019 Sep 11;99(4):2015-113. CrossRef PubMed
  31. Bell SM, Schreiner CM, Schultheis PJ, Miller ML, Evans RL, Vorhees CV, Shull GE, Scott WJ. Targeted disruption of the murine Nhe1 locus induces ataxia, growth retardation, and seizures. Am J Physiol-Cell Physiol. 1999 Apr 1;276(4):C788-95. CrossRef PubMed
  32. Gardner CC, James PF. Na+/H+ Exchangers (NHEs) in mammalian sperm: Essential contributors to male fertility. Int J Mol Sci. 2023 Oct 7;24(19):14981. CrossRef PubMed PubMedCentral
  33. Woo AL, James PF, Lingrel JB. Roles of the Na+,K+- ATPase α4 isoform and the Na+/H+ exchanger in sperm motility. Mol Reproduct Dev: Incorporat Gamete Res. 2002 Jul;62(3):348-56. CrossRef PubMed
  34. Liu T, Huang JC, Zuo WL, Lu CL, Chen M, Zhang XS, Li YC, Cai H, Zhou WL, Hu ZY, Gao F. A novel testis-specific Na+/H+ exchanger is involved in sperm motility and fertility. Front Biosci (Elite edition). 2010 Jan 1;2(2):566-81. CrossRef PubMed
  35. Oberheide K, Puchkov D, Jentsch TJ. Loss of the Na+/ H+ exchanger NHE8 causes male infertility in mice by disrupting acrosome formation. J Biol Chem. 2017 Jun 30;292(26):10845-54. CrossRef PubMed PubMedCentral
  36. Zhang Z, Yang Y, Wu H, Zhang H, Zhang H, Mao J, Liu D, Zhao L, Lin H, Tang W, Hong K. Sodium-hydrogenexchanger expression in human sperm and its relationship with semen parameters. J Ass Reproduct Genet. 2017 Jun;34:795-801. CrossRef PubMed PubMedCentral
  37. Chen SR, Chen M, Deng SL, Hao XX, Wang XX, Liu YX. Sodium-hydrogen exchanger NHA1 and NHA2 control sperm motility and male fertility. Cell Death Dis. 2016 Mar;7(3):e2152. CrossRef PubMed PubMedCentral
  38. Cavarocchi E, Whitfield M, Chargui A, Stouvenel L, Lorès P, Coutton C, Arnoult C, Santulli P, Patrat C, Thierry-Mieg N, Ray PF. The sodium/proton exchanger SLC9C1 (sNHE) is essential for human sperm motility and fertility. Clin Genet. 2021 May;99(5):684-93. CrossRef PubMed
  39. Anderegg MA, Gyimesi G, Ho TM, Hediger MA, Fuster DG. The less well-known little brothers: the SLC9B/NHA sodium proton exchanger subfamily-structure, function, regulation and potential drug-target approaches. Front Physiol. 2022 May 25;13:898508. CrossRef PubMed PubMedCentral
  40. Gardner CC, James PF. The SLC9C2 gene product (Na+/H+ exchanger isoform 11; NHE11) is a testis-specific protein localized to the head of mature mammalian sperm. Int J Mol Sci. 2023 Mar 10;24(6):5329. CrossRef PubMed PubMedCentral
  41. Lishko PV, Botchkina IL, Fedorenko A, Kirichok Y. Acid extrusion from human spermatozoa is mediated by flagellar voltage-gated proton channel. Cell. 2010 Feb 5;140(3):327-37. CrossRef PubMed
  42. Lishko PV, Kirichok Y, Ren D, Navarro B, Chung JJ, Clapham DE. The control of male fertility by spermatozoan ion channels. Annu Rev Physiol. 2012 Mar 17;74:453-75. CrossRef PubMed PubMedCentral
  43. Bernardino RL, Carrageta DF, Sousa M, Alves MG, Oliveira PF. pH and male fertility: Making sense on pH homeodynamics throughout the male reproductive tract. Cell Mol Life Sci. 2019 Oct 1;76:3783-800. CrossRef PubMed PubMedCentral
  44. Chen WY, Xu WM, Chen ZH, Ni Y, Yuan YY, Zhou SC, Zhou WW, Tsang LL, Chung YW, Höglund P, Chan HC. Cl− is required for HCO3− entry necessary for sperm capacitation in guinea pig: involvement of a Cl−/HCO3− exchanger (SLC26A3) and CFTR. Biol Reproduct. 2009 Jan 1;80(1):115-23. CrossRef PubMed
  45. Grahn E, Kaufmann SV, Askarova M, Ninov M, Welp LM, Berger TK, Urlaub H, Kaupp UB. Control of intracellular pH and bicarbonate by CO2 diffusion into human sperm. Nat Commun. 2023 Sep 5;14(1):5395. CrossRef PubMed PubMedCentral
  46. Wennemuth G, Westenbroek RE, Xu T, Hille B, Babcock DF. CaV2. 2 and CaV2. 3 (N-and R-type) Ca2+ channels in depolarization-evoked entry of Ca2+ into mouse sperm. J Biol Chem. 2000 Jul 14;275(28):21210-7. CrossRef PubMed
  47. Nowicka-Bauer K, Szymczak-Cendlak M. Structure and function of ion channels regulating sperm motility-an overview. Int J Mol Sci. 2021 Mar 23;22(6):3259. CrossRef PubMed PubMedCentral
  48. Costello S, Michelangeli F, Nash K, Lefievre L, Morris J, Machado-Oliveira G, Barratt C, Kirkman-Brown J, Publicover S. Ca2+-stores in sperm: their identities and functions. Reproduction (Cambridge). 2009 Sep;138(3):425. CrossRef PubMed PubMedCentral
  49. Jaldety Y, Breitbart H. ERK1/2 mediates sperm acrosome reaction through elevation of intracellular calcium concentration. Zygote. 2015 Oct;23(5):652-61. CrossRef PubMed
  50. Rossi A, Pizzo P, Filadi R. Calcium, mitochondria and cell metabolism: A functional triangle in bioenergetics. Biochim Biophys Acta (BBA)-Mol Cell Res. 2019 Jul 1;1866(7):1068-78. CrossRef PubMed
  51. Darszon A, Nishigaki T, Beltran C, Treviño CL. Calcium channels in the development, maturation, and function of spermatozoa. Physiol Rev. 2011 Oct;91(4):1305-55. CrossRef PubMed
  52. Fafula RV, Danylovych GV, Besedina AS, Melnyk OV, Vorobets ZD. Responsiveness to progesterone and potassium channel blockers 4-aminopyridine, tetraethylammonium and free Ca(2+) contentration in spermatozoa of patients with oligozoospermia/leucocytospermia. Ukr Biochem J. 2018 Jan-Feb;90(1):48-57. CrossRef
  53. Kirichok Y, Navarro B, Clapham DE. Whole-cell patch-clamp measurements of spermatozoa reveal an alkaline-activated Ca2+ channel. Nature. 2006 Feb 9;439(7077):737-40. CrossRef PubMed
  54. Lin S, Ke M, Zhang Y, Yan Z, Wu J. Structure of a mammalian sperm cation channel complex. Nature. 2021 Jul 29;595(7869):746-50. CrossRef PubMed
  55. Zeng XH, Yang C, Kim ST, Lingle CJ, Xia XM. Deletion of the Slo3 gene abolishes alkalization-activated K+ current in mouse spermatozoa. Proc Natl Acad Sci. 2011 Apr 5;108(14):5879-84. CrossRef PubMed PubMedCentral
  56. Seredenina T, Demaurex N, Krause KH. Voltage-gated proton channels as novel drug targets: From NADPH oxidase regulation to sperm biology. Antioxid Redox Sign. 2015 Aug 10;23(5):490-513. CrossRef PubMed PubMedCentral
  57. Brenker C, Goodwin N, Weyand I, Kashikar ND, Naruse M, Krähling M, Müller A, Kaupp UB, Strünker T. The CatSper channel: a polymodal chemosensor in human sperm. EMBO J. 2012 Apr 4;31(7):1654-65. CrossRef PubMed PubMedCentral
  58. Brenker C, Rehfeld A, Schiffer C, Kierzek M, Kaupp UB, Skakkebæk NE, Strünker T. Synergistic activation of CatSper Ca2+ channels in human sperm by oviductal ligands and endocrine disrupting chemicals. Human Reproduct. 2018 Oct 1;33(10):1915-23. CrossRef PubMed
  59. Young S, Schiffer C, Wagner A, Patz J, Potapenko A, Herrmann L, Nordhoff V, Pock T, Krallmann C, Stallmeyer B, Röpke A. Unexplained infertility is frequently caused by defective CatSper function preventing sperm from penetrating the egg coat. MedRxiv. 2023:2023-03. CrossRef
  60. Luo T, Chen HY, Zou QX, Wang T, Cheng YM, Wang HF, Wang F, Jin ZL, Chen Y, Weng SQ, Zeng XH. A novel copy number variation in CATSPER2 causes idiopathic male infertility with normal semen parameters. Human Reproduct. 2019 Mar 1;34(3):414-23. CrossRef PubMed
  61. Singh AP, Rajender S. CatSper channel, sperm function and male fertility. Reproduct Biomed Online. 2015 Jan 1;30(1):28-38. CrossRef PubMed
  62. Francavilla F, Battista N, Barbonetti A, Vassallo MR, Rapino C, Antonangelo C, Pasquariello N, Catanzaro G, Barboni B, Maccarrone M. Characterization of the endocannabinoid system in human spermatozoa and involvement of transient receptor potential vanilloid 1 receptor in their fertilizing ability. Endocrinology. 2009 Oct 1;150(10):4692-700. CrossRef PubMed
  63. Cooray A, Kim JH, Chae MR, Lee S, Lee KP. Perspectives on potential fatty acid modulations of motility associated human sperm ion channels. Int J Mol Sci. 2022 Mar 28;23(7):3718. CrossRef PubMed PubMedCentral
  64. Sosa CM, Zanetti MN, Pocognoni CA, Mayorga LS. Acrosomal swelling is triggered by cAMP downstream of the opening of store-operated calcium channels during acrosomal exocytosis in human sperm. Biol Reproduct. 2016 Mar 1;94(3):57-1. CrossRef PubMed
  65. Orta G, Ferreira G, José O, Treviño CL, Beltrán C, Darszon A. Human spermatozoa possess a calcium-dependent chloride channel that may participate in the acrosomal reaction. J Physiol. 2012 Jun 1;590(11):2659-75. CrossRef PubMed PubMedCentral
  66. Brown SG, Publicover SJ, Barratt CL, Martins da Silva SJ. Human sperm ion channel (dys) function: implications for fertilization. Human Reproduct Update. 2019 Nov 5;25(6):758-76. CrossRef PubMed PubMedCentral
  67. Calamera J, Buffone M, Ollero M, Alvarez J, Doncel GF. Superoxide dismutase content and fatty acid composition in subsets of human spermatozoa from normozoospermic, asthenozoospermic, and polyzoospermic semen samples. Mol Reproduct Dev: Incorporat Gamete Res. 2003 Dec;66(4):422-30. CrossRef PubMed
  68. Williams KM, Ford WC. Effects of Ca-ATPase inhibitors on the intracellular calcium activity and motility of human spermatozoa. Int J Androlog. 2003 Dec;26(6):366-75. CrossRef PubMed
  69. Schuh K, Cartwright EJ, Jankevics E, Bundschu K, Liebermann J, Williams JC, Armesilla AL, Emerson M, Oceandy D, Knobeloch KP, Neyses L. Plasma membrane Ca2+ ATPase 4 is required for sperm motility and male fertility. J Biol Chem. 2004 Jul 2;279(27):28220-6. CrossRef PubMed
  70. Du Plessis SS, McAllister DA, Luu A, Savia J, Agarwal A, Lampiao F. Effects of H2O2 exposure on human sperm motility parameters, reactive oxygen species levels and nitric oxide levels. Andrologia. 2010 Jun;42(3):206-10. CrossRef PubMed
  71. Andrews RE, Galileo DS, Martin-DeLeon PA. Plasma membrane Ca2+-ATPase 4: interaction with constitutive nitric oxide synthases in human sperm and prostasomes which carry Ca2+/CaM-dependent serine kinase. MHR: Basic Sci Reproduct Med. 2015 Nov 1;21(11):832-43. CrossRef PubMed PubMedCentral
  72. Olli KE, Li K, Galileo DS, Martin-DeLeon PA. Plasma membrane calcium ATPase 4 (PMCA4) co-ordinates calcium and nitric oxide signaling in regulating murine sperm functional activity. J Cell Physiol. 2018 Jan;233(1):11-22. CrossRef PubMed PubMedCentral
  73. Lawson C, Dorval V, Goupil S, Leclerc P. Identification and localisation of SERCA 2 isoforms in mammalian sperm. Mol Human Reproduct. 2007 May 1;13(5):307-16. CrossRef PubMed
  74. Krasznai Z, Krasznai ZT, Morisawa M, Bazsáné ZK, Hernádi Z, Fazekas Z, Trón L, Goda K, Márián T. Role of the Na+/Ca2+ exchanger in calcium homeostasis and human sperm motility regulation. Cell Motil Cytoskelet. 2006 Feb;63(2):66-76. CrossRef PubMed
  75. Dode L, Andersen JP, Raeymaekers L, Missiaen L, Vilsen B, Wuytack F. Functional comparison between secretory pathway Ca2+/Mn2+-ATPase (SPCA) 1 and sarcoplasmic reticulum Ca2+-ATPase (SERCA) 1 isoforms by steadystate and transient kinetic analyses. J Biol Chem. 2005 Nov 25;280(47):39124-34. CrossRef PubMed
  76. Correia J, Michelangeli F, Publicover S. Regulation and roles of Ca2+ stores in human sperm. Reproduction. 2015 Aug 1;150(2):R65-76. CrossRef PubMed PubMedCentral
  77. Harper C, Wootton L, Michelangeli F, Lefièvre L, Barratt C, Publicover S. Secretory pathway Ca2+-ATPase (SPCA1) Ca2+ pumps, not SERCAs, regulate complex [Ca2+] i signals in human spermatozoa. J Cell Sci. 2005 Apr 15;118(8):1673-85. CrossRef PubMed
  78. Singh AP, Rajender S. CatSper channel, sperm function and male fertility. Reproduct Biomed Online. 2015 Jan 1;30(1):28-38. CrossRef PubMed
  79. Ribeiro JC, Alves MG, Yeste M, Cho YS, Calamita G, Oliveira PF. Aquaporins and (in) fertility: More than just water transport. Biochim Biophys Acta (BBA)-Mol Basis Dis. 2021 Mar 1;1867(3):166039. CrossRef PubMed
  80. Carrageta DF, Bernardino RL, Soveral G, Calamita G, Alves MG, Oliveira PF. Aquaporins and male (in) fertility: Expression and role throughout the male reproductive tract. Arch Biochem Biophys. 2020 Jan 15;679:108222. CrossRef PubMed

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2025.