Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2025; 71(1): 71-78


ACTIVATION OF MITOCHONDRIAL CARDIOPROTECTION MECHANISMS DURING ISCHEMIA-REPERFUSION OF ISOLATED RAT HEARTS WITH INSULIN RESISTANCE

M.G. Kozlovska1,2, M.I. Vasylenko1,2, O.O. Gonchar1, K.V. Rozova1, A.G. Portnychenko1,2]

  1. Bogomoletz Institute of Physiology, NAS of Ukraine, Kyiv, Ukraine
  2. MC AMED NAS of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz71.01.071


Abstract

Dysregulation of mitochondrial functions can significantly disrupt energy metabolism in the myocardium. However, mitochondrial mechanisms of cardioprotection and their disruption in metabolic disorders are still insufficiently studied. The aim of the our work was to characterize mitochondrial mechanisms of cardioprotection in ischemia-reperfusion of the rat heart under conditions of insulin resistance and hypoxic preconditioning. Adult male Wistar rats were induced to insulin resistance by consuming a high-fat diet with 58% fat for 14 days. Hypoxic preconditioning was reproduced by exposure to hypobaric hypoxia (360 Torr) in a pressure chamber for 3 hours. To assess the cardioprotective effects, 30-minute ischemia and 40-minute reperfusion of the isolated heart were simulated after 24 hours with isovolumic retrograde perfusion according to the Langendorff method. The size of the myocardial infarction, oxidative stress indicators and the level of expression of the mitochondrial protein PGC-1α were determined. Mitochondria were examined using electron microscopy. In the myocardium of insulin-resistant rats, there was a quantitative increase in all mitochondrial subpopulations, activation of their intracellular connections with other organelles, and an increase in the level of PGC-1α expression in the left ventricle. At the same time, activation of free radical processes in the myocardium was observed with an increase in the content of TBA-AP and activation of antioxidant mechanisms, in particular, the glutathione system. Hypoxic preconditioning increased the level of PGC-1α expression in the right ventricle, led to the activation of energy metabolism, increased mitochondrial dynamics with the elimination of damaged organelles by mitophagy and biogenesis of new mitochondria against the background of a decrease in mitochondrial dysfunction. After ischemia-reperfusion in the myocardium of insulin-resistant rats, limitations in mitochondrial damage and manifestations of their dysfunction were observed. Preconditioning contributed to a decrease in infarct size, enhanced the mitoprotective effect in the ischemic heart. Insulin resistance contributed to the intensification of PGC-1α-dependent mitochondrial mechanisms of protection against ischemic damage in the myocardium. Hypoxic preconditioning enhanced the myoprotective effect in insulin-resistant hearts compared with intact myocardium, leading to a reduction in myocardial infarct size during isolated heart ischemia-reperfusion, but the antioxidant effect was partially lost.

Keywords: insulin resistance; high-fat diet; hypoxia; preconditioning; ischemia-reperfusion; cardioprotection; mitochondrial dysfunction; oxidative stress; PGC-1α; rats.

References

  1. Li J, Li J, Chen Y, Hu W, Gong X, Qiu H, Chen H, Xin Y, Li H. The Role of Mitochondria in Metabolic SyndromeAssociated Cardiomyopathy. Oxid Med Cell Longev. 2022 Jun 23;2022:9196232. doi: 10.1155/2022/9196232. CrossRef PubMed PubMedCentral
  2. Qian L, Zhu Y, Deng C, Liang Z, Chen J, Chen Y, Wang X, Liu Y, Tian Y, Yang Y. Peroxisome proliferatoractivated receptor gamma coactivator-1 (PGC-1) family in physiological and pathophysiological process and diseases. Signal Transduct Target Ther. 2024 Mar 1;9(1):50. doi: 10.1038/s41392-024-01756-w. CrossRef PubMed PubMedCentral
  3. Actis Dato V, Lange S, Cho Y. Metabolic flexibility of the heart: the role of fatty acid metabolism in health, heart failure, and cardiometabolic diseases. Int J Mol Sci. 2024 Jan 19;25(2):1211. doi: 10.3390/ijms25021211. CrossRef PubMed PubMedCentral
  4. Portnychenko AG, Vasylenko MI, Harmatina OYu, Drevytska TI, Portnichenko VI. Myocardial preconditioning: New approaches and molecular mechanisms. Portnychenko A.G., editor. Kyiv: Znannia Ukrainy; 2019 [Ukrainian].
  5. Portnychenko AG, Vasylenko MI, Aliiev RB, Kozlovska MG, Zavhorodnii MO, Tsapenko PK, Rozova KV, Portnichenko VI. The prerequisites for the development of type 2 diabetes or prediabetes in rats fed a highfat diet. Regul Mech Biosyst. 2023;14(1):16-22. doi. org/10.15421/022303. CrossRef
  6. Moro C, Magnan C. Revisited guidelines for metabolic tolerance tests in mice. Lab Animal. 2024 Nov 25: 16-25. doi.org/10.1038/s41684-024-01473-5. CrossRef PubMed PubMedCentral
  7. Uchiyama M, Mihara M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Analytical Biochemistry. 1978 May;86(1):271-8. doi. org/10.1016/0003-2697(78)90342-1. CrossRef PubMed
  8. Gonchar OO, Karaban IM, Karasevich NV, Bratus LV, Mankovska IM. Cerebrolysin administration counteracts elevated oxidative stress in blood of patients with Parkinson's disease. Fiziol Zh. 2022; 68(4):20-27. CrossRef
  9. Heusch G. Myocardial ischemia: lack of coronary blood flow, myocardial oxygen supply-demand imbalance, or what? Am J Physiol Heart Circ Physiol. 2019 Jun 1;316(6):H1439-H1446. doi: 10.1152/ ajpheart.00139.2019. CrossRef PubMed PubMedCentral
  10. Fuchs M, Ehlers K, Will T, van Bel AJ. Immunolocalization indicates plasmodesmal trafficking of storage proteins during cambial reactivation in Populus nigra. Ann Bot. 2010 Sep;106(3):385-94. doi: 10.1093/aob/ mcq130. CrossRef PubMed PubMedCentral
  11. Weibel ER. Stereological principles for morphometry in electron microscopic cytology. Int Rev Cytol. 1969;26:235-302. doi: 10.1016/s0074-7696(08)61637-x. CrossRef PubMed
  12. Tsapenko PK, Vasylenko MI, Aliiev RB, Zavgorodniy MO, Kozlovska MG, Topchaniuk LYa, et al. Effects of high-fat diet on the development of insulin resistance and metabolic syndrome in rats. Ukr J Med Biol Sport 2020;5(3):441-444. doi.org/10.26693/jmbs05.03.441 Ansley DM, Wang B. Oxidative stress and myocardial injury in the diabetic heart. J Pathol. 2013 Jan;229(2):232- CrossRef PubMed PubMedCentral
  13. doi: 10.1002/path.4113. CrossRef PubMed PubMedCentral
  14. Xi L, Tekin D, Erdal Gursoy, Salloum FN, Levasseur JE, Kukreja RC. Evidence that NOS2 acts as a trigger and mediator of late preconditioning induced by acute systemic hypoxia. 2002 Jul 1;283(1):H5-12. doi. org/10.1152/ajpheart.00920.2001 CrossRef PubMed
  15. Nakamura E, Aoki T, Endo Y, Kazmi J, Hagiwara J, Kuschner CE, et al. Organ-specific mitochondrial alterations following ischemia-reperfusion injury in post-cardiac arrest syndrome: A comprehensive review. life (Basel). 2024 Apr 5;14(4):477. doi: 10.3390/life14040477. CrossRef PubMed PubMedCentral
  16. Dikalov S, Panov A, Dikalova A. Critical Role of Mitochondrial Fatty Acid Metabolism in Normal Cell Function and Pathological Conditions. Int J Mol Sci. 2024 Jun 12;25(12):6498. doi: 10.3390/ijms25126498. CrossRef PubMed PubMedCentral
  17. Penna C, Andreadou I, Aragno M, Beauloye C, Bertrand L, Lazou A, et al. Effect of hyperglycaemia and diabetes on acute myocardial ischaemia-reperfusion injury and cardioprotection by ischaemic conditioning protocols. Brit J of Pharmacol,2020, 177(23), 5312-35. doi.org/10.1111/bph.14993 CrossRef PubMed PubMedCentral
  18. Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol. 2018 Feb;19(2):121-135. doi: 10.1038/nrm.2017.95. CrossRef PubMed PubMedCentral
  19. Anderson RM, Barger JL, Edwards MG, Braun KH, O'Connor CE, Prolla TA, Weindruch R. Dynamic regulation of PGC-1alpha localization and turnover implicates mitochondrial adaptation in calorie restriction and the stress response. Aging Cell. 2008 Jan;7(1):101-11. doi: 10.1111/j.1474-9726.2007.00357.x. CrossRef PubMed PubMedCentral
  20. Larson-Casey JL, Gu L, Davis D, Cai GQ, Ding Q, He C, Carter AB. Post-translational regulation of PGC-1α modulates fibrotic repair. FASEB J. 2021 Jun;35(6):e21675. doi: 10.1096/fj.202100339R. CrossRef PubMed PubMedCentral

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2025.