DEVELOPMENT OF HYPOTENSION AND BRADYCARDIA UNDER THE EFFECT OF PROPOFOL ON RATS WITH DIABETES MELLITUS
N.V. Dobrelia1, I.V. Ivanova1, V.G. Sydorenko1, A.S. Khromov1, D.O. Dziuba2, O.A. Loskutov2, A.I. Soloviev1
- SI “Institute of Pharmacology and Toxicology NAMS of Ukraine”
- Shupik National Healthcare University of Ukraine
DOI: https://doi.org/10.15407/fz71.01.003

Abstract
Propofol is an anesthetic that is widely used in clinical practice
and recommended for patients with diabetes mellitus because
it produces less complications compared to other anesthetics.
Furthermore, surgical procedures may result in the develop ment of hypoxia. The aim of our study was to investigate the
effect of propofol on systemic vascular contractility, mean
arterial pressure (MAP), and heart rate (HR) under normoxia
and hypoxia in rats with streptozotocin-induced type 1 diabetes (DM). The effect of propofol (10-9 - 3×10-4 mol/l) on
the aortic segments of rats with DM caused a significant
dose-dependent relaxation compared with control rats. A
single intravenous injection of propofol caused no alterations
in the hemodynamics of control rats. Still, it induced a dosedependent reduction in HR and MAP in rats with DM under the
maximum dose of the study at normoxia. The administration
of propofol under hypoxic hypoxia (HH) caused no decrease
in MAP but reduced HR in control rats. In rats with diabetes,
propofol treatment under HH induced a gradual decrease in
MAP and HR, and the reduction in HR was significantly larger
than in control rats. HH, which was exposed to animals after
propofol administration, produced a significant decrease in
MAP compared to rats without the treatment in both groups
of rats. HH caused no changes in HR in control rats regardless
of pretreatment with propofol but in rats with DM after propofol administration, hypoxic exposure induced a significant
decrease in HR, which was accompanied by a rapid drop in
MAP and bradycardia for 37.5% of the animals. Therefore,
propofol caused no alterations in hemodynamic parameters in
healthy rats under normoxia but reduced HR and MAP in rats
with DM. Especially this effect was manifested under hypoxia.
The data obtained can help to develop guidelines for propofol
use in patients with DM.
Keywords:
diabetes mellitus; blood pressure; hypotension; heart rate; bradycardia; propofol.
References
- Kotagal M, Symons RG, Hirsch IB, Umpierrez GE, Dellinger EP, Farrokhi ET, Flum DR. Perioperative hyperglycemia and risk of adverse events among patients with and without diabetes. Ann Surg. 2015;261(1):97-103.
CrossRef
PubMed PubMedCentral
- Crowley K, Scanaill PÓ, Hermanides J, Buggy DJ. Current practice in the perioperative management of patients with diabetes mellitus: a narrative review. Br J Anaesth. 2023;131(2):242-52.
CrossRef
PubMed PubMedCentral
- Dostalek M, Akhlaghi F, Puzanovova M. Effect of diabetes mellitus on pharmacokinetic and pharmacodynamic properties of drugs. Clin Pharmacokinet. 2012;51(8):481-99.
CrossRef
PubMed
- Halushko OA. Diabetes mellitus in the practice of an anesthesiologist: a focus on diabetic neuropathy. Emerg Med. 2020;16(3):37-46.
CrossRef
- Xiong X, He Y, Zhou C, Zheng Q, Chen C, Liang P. Impact of total intravenous anesthesia and total inhalation anesthesia as the anesthesia maintenance approaches on blood glucose level and postoperative complications in patients with type 2 diabetes mellitus: a doubleblind, randomized controlled trial. BMC Anesthesiol. 2023;23(1):267.
CrossRef
PubMed PubMedCentral
- Sneyd JR, Absalom AR, Barends CRM, Jones JB. Hypotension during propofol sedation for colonoscopy: a retrospective exploratory analysis and meta-analysis. Br J Anaesth. 2022;128(4):610-22.
CrossRef
PubMed PubMedCentral
- Fabus MS, Sleigh JW, Warnaby CE. Effect of propofol on heart rate and its coupling to cortical slow waves in humans. Anesthesiology. 2024;140(1):62-72.
CrossRef
PubMed PubMedCentral
- Jia L, Li H, Li T. Efficacy of sevoflurane and propofol anesthesia on perioperative adverse cardiovascular events and hemodynamics in elderly patients with diabetes. Clin Ther. 2024;46(3):246-51.
CrossRef
PubMed
- Ehrenfeld JM, Funk LM, Van Schalkwyk J, Merry AF, Sandberg WS, Gawande A. The incidence of hypoxemia during surgery: evidence from two institutions. Can J Anaesth. 2010;57(10):888-97.
CrossRef
PubMed PubMedCentral
- Saraswat V. Effects of anaesthesia techniques and drugs on pulmonary function. Ind J Anaesth. 2015;59(9):557-64.
CrossRef
PubMed PubMedCentral
- Gurney AM, Howarth FC. Effects of streptozotocininduced diabetes on the pharmacology of rat conduit and resistance intrapulmonary arteries. Cardiovascul Diabet. 2009;8(4):1-10.
CrossRef
PubMed PubMedCentral
- Soloviev A, Ivanova I, Melnyk M, Dobrelia N, Khromov A. Hypoxic pulmonary vasoconstriction is lacking in rats with type 1 diabetes. Clin Exp Pharmacol Physiol. 2019;46(11):1022-29.
CrossRef
PubMed
- Wang L, Jiang W. Propofol induces endothelial nitric oxide synthase phosphorylation and activation in human umbilical vein endothelial cells by inhibiting protein kinase C delta expression. Eur J Anaesthesiol. 2010 Mar;27(3):258-64.
CrossRef
PubMed
- Fassl J, High KM, Stephenson ER, Yarotskyy V, Elmslie KS. The intravenous anesthetic propofol inhibits human L-type calcium channels by enhancing voltage-dependent inactivation. J Clin Pharmacol. 2011;51(5):719-30.
CrossRef
PubMed
- Liu XR, Tan XQ, Yang Y, Zeng XR, Tang XL. Propofol increases the Ca2+ sensitivity of BKCa in the cerebral arterial smooth muscle cells of mice. Acta Pharmacol Sin. 2012;33(1):19-26.
CrossRef
PubMed PubMedCentral
- Nystoriak MA, Nieves-Cintrón M, Patriarchi T, Buonarati OR, Prada MP, Morotti S, Grandi E, Fernandes JD, Forbush K, Hofmann F, Sasse KC, Scott JD, Ward SM, Hell JW, Navedo MF. Ser1928 phosphorylation by PKA stimulates the L-type Ca2+ channel CaV1.2 and vasoconstriction during acute hyperglycemia and diabetes. Sci Sign. 2017;10(463):eaaf9647.
CrossRef
PubMed PubMedCentral
- Hou W, Yin S, Li P, Zhang L, Chen T, Qin D, Mustafa AU, Liu C, Song M, Qiu C, Xiong X, Wang J. Aberrant splicing of CaV1.2 calcium channel induced by decreased Rbfox1 enhances arterial constriction during diabetic hyperglycemia. Cell Mol Life Sci. 2024;81(1):164.
CrossRef
PubMed PubMedCentral
- Iegorova O, Maximyuk O, Fisyunov A, Krishtal O. Voltage-gated calcium channels: classification and pharmacological properties (Part I). Fiziol Zh (1994). 2016;62(4):84-94. [Ukrainian].
CrossRef
PubMed
- Zhang G, Cui J, Chen Y, Ma J. The relaxant effect of propofol on isolated rat intrapulmonary arteries. Korean J Physiol Pharmacol. 2014;18(5):377-81.
CrossRef
PubMed PubMedCentral
- Hara K, Harris RA. The anesthetic mechanism of urethane: the effects on neurotransmitter-gated ion channels. Anesth Analg. 2002;94(2):313-8.
CrossRef
PubMed
- Yang CY, Wu WC, Chai CY, Hsu JC, See LC, Lui PW, Tan PP. Propofol inhibits neuronal firing activities in the caudal ventrolateral medulla. Chang Gung Med J. 2003;26(8):570-7.
- Wu WC, Yang CY, Chai CY. Modulation of propofol on the effects of blood pressure and firing activity of related neurons in the medulla. Chin J Physiol. 2009;52(5):358-64.
CrossRef
PubMed
- Maruyama K, Nishikawa Y, Nakagawa H, Ariyama J, Kitamura A, Hayashida M. Can intravenous atropine prevent bradycardia and hypotension during induction of total intravenous anesthesia with propofol and remifentanil? J Anesth. 2010;24(2):293-6.
CrossRef
PubMed
- Kitagawa N, Katoku M, Kasahara T, Tsuruta T, Oda M, Totoki T. Does atropine reduce the risk of propofolinduced cardiovascular depression? Anesth Analg. 2006;103(6):1606-8.
CrossRef
PubMed
- Horng HC, Chen FC, Ho CC, Kuo CP, Wu CT, Wong CS. Bradycardia and hypotension refractory to ephedrine and atropine treatment: severe autonomic dysfunction with abnormal heart rate variability. Acta Anaesthesiol Taiwan. 2006;44(2):109-12.
- de la Fuente L, Lukas JC, Jauregizar N, Vázquez JA, Calvo R, Suárez E. Prediction of unbound propofol concentrations in a diabetic population. Ther Drug Monit. 2002;24(6):689-95.
CrossRef
PubMed
- Leal N, Calvo R, Agrad FZ, Lukas JC, de la Fuente L, Suarez E. Altered dose-to-effect of propofol due to pharmacokinetics in rats with experimental diabetes mellitus. J Pharm Pharmacol. 2005;57(3):317-25.
CrossRef
PubMed
- Folino TB, Muco E, Safadi AO, Safadi AO, Parks LJ. Propofol. Treasure Island (FL): StatPearls Publishing; 2024. Available from: https://www.ncbi.nlm.nih.gov/ books/NBK430884/
- Levy BI, Schiffrin EL, Mourad JJ, Agostini D, Vicaut E, Safar ME, Struijker-Boudier HA. Impaired tissue perfusion: a pathology common to hypertension, obesity, and diabetes mellitus. Circulation. 2008;118(9):968-76.
CrossRef
PubMed
- Hug CC, Jr, McLeskey CH, Nahrwold ML, Roizen MF, Stanley TH, Thisted RA, Walawander CA, White PF, Apfelbaum JL, Grasela TH. Hemodynamic effects of propofol: data from over 25,000 patients. Anesth Analg. 1993;77(4):S21-9.
- Kojima A, Ito Y, Kitagawa H, Matsuura H. Inhibition of sinoatrial node activity by propofol. Br J Pharmacol. 2015;172:799-814.
CrossRef
PubMed PubMedCentral
- Cheng W, Sun X, Liu Y, Han S, Ren W. the chronotropic function of propofol and the underlying mechanism in rabbits. J Health Eng. 2021;2021:5222745.
CrossRef
PubMed PubMedCentral
- Aguero Peña RE, Pascuzzo-Lima C, Granado Duque AE, Bonfante-Cabarcas RA. Propofol-induced myocardial depression: possible role of atrial muscarinic cholinergic receptors. Rev Esp Anestesiol Reanim. 2008;55(2):81-5. [Spanish]
CrossRef
PubMed
|