Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2024; 70(6): 110-117


Astrocytes play critical roles in neuroinflammation and Parkinson’s disease

A.G. Nikonenko

    Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz70.06.110


Abstract

Parkinson’s disease (PD) is a multifactorial disorder characterized mainly by the loss of dopaminergic neurons in the substantia nigra of the brain. The pathogenesis of a spontaneous PD is suggested to be multifactorial, an aberrant immune function being one of the factors influencing PD-associated neurodegeneration. It was found that negrostriatal astrocytes get involved in this process. Astrocytes play vital roles in brain homeostasis as well as participate in the local innate immune response triggered by a variety of insults. Astrocytes are not immune cells, but when sensing injury-associated molecular patterns they transform through a process called “reactivity” and become important regulators of the immune response. However, the underlying molecular mechanisms of astrocytes’ contribution to the PD-associated neurodegeneration are not fully understood. A better understanding of astrocyte functions in PD may provide insights into PD pathogenesis and novel therapeutic approaches for the disease. This paper reviews the role of astrocytes in innate immunity and PD.

Keywords: astrocytes; neuroinflammation; Parkinson’s disease.

References

  1. Ball N, Teo WP, Chandra S, Chapman J. Parkinson's disease and the environment. Front Neurol. 2019; 10: 218. CrossRef PubMed PubMedCentral
  2. Tansey MG, Wallings RL, Houser MC, Herrick MK, Keating CE, Joers V. Inflammation and immune dysfunction in Parkinson disease. Nat Rev Immunol. 2022; 22(11): 657-73. CrossRef PubMed PubMedCentral
  3. Norris GT, Kipnis J. Immune cells and CNS physiology: Microglia and beyond. J Exp Med. 2019; 216(1): 60-70. CrossRef PubMed PubMedCentral
  4. Sofroniew MV. Astrocyte reactivity: Subtypes, states, and functions in CNS innate immunity. Trends Immunol. 2020; 41(9): 758-70. CrossRef PubMed PubMedCentral
  5. Sanmarco LM, Polonio CM, Wheeler MA, Quintana FJ. Functional immune cell-astrocyte interactions. J Exp Med. 2021; 218(9): e20202715. CrossRef PubMed PubMedCentral
  6. Sofroniew MV. Astrocyte cells in the brain have immune memory. Nature. 2024; 627(8005): 744-5. CrossRef PubMed
  7. Kriegstein A, Alvarez-Buylla A. The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci. 2009; 32: 149-84. CrossRef PubMed PubMedCentral
  8. Schneider J, Weigel J, Wittmann MT, Svehla P, Ehrt S, Zheng F, Elmzzahi T, Karpf J, Paniagua-Herranz L, Basak O, Ekici A, Reis A, Alzheimer C, Ortega F, Liebscher S, Beckervordersandforth R. Astrogenesis in the murine dentate gyrus is a life-long and dynamic process. EMBO J. 2022; 41(11): e110409. CrossRef PubMed PubMedCentral
  9. Quan L, Uyeda A, Muramatsu R. Central nervous system regeneration: the roles of glial cells in the potential molecular mechanism underlying remyelination. Inflamm Regen. 2022; 42(1): 7. CrossRef PubMed PubMedCentral
  10. Verkhratsky A, Pivoriūnas A. Astroglia support, regulate and reinforce brain barriers. Neurobiol Dis. 2023; 179: 106054. CrossRef PubMed
  11. Lia A, Di Spiezio A, Speggiorin M, Zonta M. Two decades of astrocytes in neurovascular coupling. Front Netw Physiol. 2023; 3: 1162757. CrossRef PubMed PubMedCentral
  12. Wang XF, Cynader MS. Astrocytes provide cysteine to neurons by releasing glutathione. J Neurochem. 2000; 74: 1434-42. CrossRef PubMed
  13. Chung RS, Penkowa M, Dittmann J, King CE, Bartlett C, Asmussen JW, Hidalgo J, Carrasco J, Leung YK, Walker AK, Fung SJ, Dunlop SA, Fitzgerald M, Beazley LD, Chuah MI, Vickers JC, West AK. Redefining the role of metallothionein within the injured brain: Extracellular metallothioneins play an important role in the astrocyteneuron response to injury. J Biol Chem. 2008; 283(22): 15349-58. CrossRef PubMed PubMedCentral
  14. Kuter KZ, Cenci MA, Carta AR. The role of glia in Parkinson's disease: Emerging concepts and therapeutic applications. Prog Brain Res. 2020; 252: 131-68. CrossRef PubMed
  15. Yi JH, Hazell AS. Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury. Neurochem Int. 2006; 48(5): 394-403. CrossRef PubMed
  16. Bernardinelli Y, Magistretti PJ, Chatton JY. Astrocytes generate Na+-mediated metabolic waves. PNAS. 2004; 101: 14937-42. CrossRef PubMed PubMedCentral
  17. Khakh BS, Sofroniew MV. Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci. 2015; 18(7): 942-52. CrossRef PubMed PubMedCentral
  18. Tsai HH, Li H, Fuentealba LC, Molofsky AV, Taveira-Marques R, Zhuang H, Tenney A, Murnen AT, Fancy SPJ, Merkle F, Kessaris N, Alvarez-Buylla A, Richardson WD, Rowitch DH. Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science. 2012; 337(6092): 358-62. CrossRef PubMed PubMedCentral
  19. Ransohoff RM, Brown MA. Innate immunity in the central nervous system. J Clin Invest. 2012; 122(4): 1164-71. CrossRef PubMed PubMedCentral
  20. Farina C, Aloisi F, Meinl E. Astrocytes are active players in cerebral innate immunity. Trends Immunol. 2007; 28(3): 138-45. CrossRef PubMed
  21. Martinon F, Tschopp J. Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell. 2004; 117(5): 561-74. CrossRef PubMed
  22. Chakraborty S, Kaushik DK, Gupta M, Basu A. Inflammasome signaling at the heart of central nervous system pathology. J Neurosci Res. 2010; 88(8): 1615-31. CrossRef PubMed
  23. Kawai T, Akira S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol. 2009; 21(4): 317-37. CrossRef PubMed PubMedCentral
  24. Downes CE, Crack PJ. Neural injury following stroke: are Toll-like receptors the link between the immune system and the CNS? Br J Pharmacol. 2010; 160(8): 1872-88. CrossRef PubMed PubMedCentral
  25. Burda JE, Bernstein AM, Sofroniew MV. Astrocyte roles in traumatic brain injury. Exp Neurol. 2016; 275 (Part 3): 305-15. CrossRef PubMed PubMedCentral
  26. Rodgers KR, Lin Y, Langan TJ, Iwakura Y, Chou RC. Innate immune functions of astrocytes are dependent upon tumor necrosis factor-alpha. Sci Rep. 2020; 10(1): 7047. CrossRef PubMed PubMedCentral
  27. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Munch AE, Chung WS, Peterson TC, Wilton DK, Frouin A, Napier BA, Panicker N, Kumar M, Buckwalter MS, Rowitch DH, Dawson VL, Dawson TM, Stevens B, Barres BA. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017; 541: 481-7. CrossRef PubMed PubMedCentral
  28. Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, Barres BA. Genomic analysis of reactive astrogliosis. J Neurosci. 2012; 32(18): 6391-410. CrossRef PubMed PubMedCentral
  29. Matias I, Morgado J, Gomes FCA. Astrocyte heterogeneity: impact to brain aging and disease. Front Aging Neurosci. 2019; 11: 59. CrossRef PubMed PubMedCentral
  30. Wang T, Sun Y, Dettmer U. Astrocytes in Parkinson's disease: from role to possible intervention. Cells. 2023; 12(19): 2336. CrossRef PubMed PubMedCentral
  31. Habib N, McCabe C, Medina S, Varshavsky M, Kitsberg D, Dvir-Szternfeld R, Green G, Dionne D, Nguyen L, Marshall JL, Chen F, Zhang F, Kaplan T, Regev A, Schwartz M. Disease-associated astrocytes in Alzheimer's disease and aging. Nat Neurosci. 2020; 23(6): 701-6. CrossRef PubMed PubMedCentral
  32. Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, Teng YD, Frenkel D, Li J, Sidman RL, Walsh CA, Snyder EY, Khoury SJ. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. PNAS. 2004; 101(52): 18117-22. CrossRef PubMed PubMedCentral
  33. Lawrence JM, Schardien K, Wigdahl B, Nonnemacher MR. Roles of neuropathology-associated reactive astrocytes: a systematic review. Acta Neuropathol Commun. 2023; 11(1): 42. CrossRef PubMed PubMedCentral
  34. Song JH, Bellail A, Tse MC, Yong VW, Hao C. Human astrocytes are resistant to Fas ligand and tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. J Neurosci. 2006; 26(12): 3299-308. CrossRef PubMed PubMedCentral
  35. Bezzi P, Domercq M, Brambilla L, Galli R, Schols D, De Clercq E, Vescovi A, Bagetta G, Kollias G, Meldolesi J, Volterra A. CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci. 2001; 4(7): 702-10. CrossRef PubMed
  36. Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 2009; 32(12): 638-47. CrossRef PubMed PubMedCentral
  37. Bonini NM, Giasson BI. Snaring the function of alphasynuclein. Cell. 2005; 123(3): 359-61. CrossRef PubMed
  38. Holmans P, Moskvina V, Jones L, Sharma M, Vedernikov A. A pathway-based analysis provides additional support for an immune-related genetic susceptibility to Parkinson's disease. Hum Mol Genet. 2013; 22(5): 1039-49. CrossRef PubMed PubMedCentral
  39. McGeer PL, McGeer EG. Glial reactions in Parkinson's disease. Mov Disord. 2008; 23: 474-83. CrossRef PubMed
  40. Morales I, Sanchez A, Rodriguez-Sabate C, Rodriguez M. The astrocytic response to the dopaminergic denervation of the striatum. J Neurochem. 2016; 139: 81-95. CrossRef PubMed
  41. Zhu YF, Wang WP, Zheng XF, Chen Z, Chen T, Huang ZY, Jia LJ, Lei WL. Characteristic response of striatal astrocytes to dopamine depletion. Neural Regen Res. 2020; 15: 724-30. CrossRef PubMed PubMedCentral
  42. Voitenko LP, Nikonenko AG. Modification of experimental rotenone model of Parkinson's disease. Fiziol Zh. 2015; 61(1): 83-90. CrossRef PubMed
  43. Bogdaniuk AO, Nikonenko AG. Spatial dimension of nigral astrogliosis observed in rotenone model of Parkinson's disease. Fiziol Zh. 2018; 64(6): 40-6. CrossRef
  44. Damier P, Hirsch EC, Zhang P, Agid Y, Javoy-Agid F. Glutathione peroxidase, glial cells and Parkinson's disease. Neuroscience. 1993; 52(1): 1-6. CrossRef PubMed
  45. Zhang P, Shao XY, Qi GJ, Chen Q, Bu LL, Chen LJ, Shi J, Ming J, Tian B. Cdk5-dependent activation of neuronal inflammasomes in Parkinson's disease. Mov Disord. 2016; 31(3): 366-76. CrossRef PubMed
  46. Collins LM, Toulouse A, Connor TJ, Nolan YM. Contributions of central and systemic inflammation to the pathophysiology of Parkinson's disease. Neuropharmacology. 2012; 62(7): 2154-68. CrossRef PubMed
  47. McGeer PL, Itagaki S, Boyes BE, McGeer EG. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology. 1988; 38(8): 1285-91. CrossRef PubMed
  48. Castano A, Herrera AJ, Cano J, Machado A. Lipopolysaccharide intranigral injection induces inflammatory reaction and damage in nigrostriatal dopaminergic system. J Neurochem. 1998; 70 (4): 1584-92. CrossRef PubMed
  49. Aloe L, Fiore M. TNF-alpha expressed in the brain of transgenic mice lowers central tyroxine hydroxylase immunoreactivity and alters grooming behavior. Neurosci Lett. 1997; 238 (1-2): 65-8. CrossRef PubMed
  50. Wang J, Zheng B, Yang S, Tang X, Wang J, Wei D. The protective effects of phoenixin-14 against lipopolysaccharide-induced inflammation and inflammasome activation in astrocytes. Inflamm Res. 2020; 69(8): 779-87. CrossRef PubMed
  51. Zhu J, Hu Z, Han X, Wang D, Jiang Q, Ding J, Xiao M, Wang C, Lu M, Hu G. Dopamine D2 receptor restricts astrocytic NLRP3 inflammasome activation via enhancing the interaction of beta-arrestin2 and NLRP3. Cell Death Differ. 2018; 25(11): 2037-49. CrossRef PubMed PubMedCentral
  52. Baba M, Nakajo S, Tu PH, Tomita T, Nakaya K, Lee VM, Trojanowski JQ, Iwatsubo T. Aggregation of alphasynuclein in Lewy bodies of sporadic Parkinson's disease and dementia with Lewy bodies. Am J Pathol. 1998; 152(4): 879-84.
  53. Kovacs GG, Breydo L, Green R, Kis V, Puska G, Lorincz P, Perju-Dumbrava L, Giera R, Pirker W, Lutz M, Lachmann I, Budka H, Uversky VN, Molnár K, László L. Intracellular processing of disease-associated alphasynuclein in the human brain suggests prion-like cell-tocell spread. Neurobiol Dis. 2014; 69: 76-92. CrossRef PubMed
  54. Morales I, Sanchez A, Puertas-Avendano R, RodriguezSabate C, Perez-Barreto A, Rodriguez M. Neuroglial transmitophagy and Parkinson's disease. Glia. 2020; 68(11): 2277-99. CrossRef PubMed
  55. Lee HJ, Suk JE, Patrick C, Bae EJ, Cho JH, Rho S, Hwang D, Masliah E, Lee SJ. Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem. 2010; 285(12): 9262-72. CrossRef PubMed PubMedCentral
  56. Wakabayashi K, Hayashi S, Yoshimoto M, Kudo H, Takahashi H. NACP/alpha-synuclein-positive filamentous inclusions in astrocytes and oligodendrocytes of Parkinson's disease brains. Acta Neuropathol. 2000; 99(1): 14-20. CrossRef PubMed
  57. Rose F, Hodak M, Bernholc J. Mechanism of copper(II)- induced misfolding of Parkinson's disease protein. Sci Rep. 2011; 1: 11. CrossRef PubMed PubMedCentral
  58. McLeary FA, Rcom-H'cheo-Gauthier AN, Goulding M, Radford RAW, Okita Y, Faller P, Chung RS, Pountney DL. Switching on endogenous metal binding proteins in Parkinson's disease. Cells. 2019; 8(2): 179. CrossRef PubMed PubMedCentral
  59. Michael GJ, Esmailzadeh S, Moran LB, Christian L, Pearce RK, Graeber MB. Up-regulation of metallothionein gene expression in parkinsonian astrocytes. Neurogenetics. 2011; 12(4): 295-305. CrossRef PubMed
  60. Miyazaki I, Asanuma M, Kikkawa Y, Takeshima M, Murakami S, Miyoshi K, Sogawa N, Kita T. Astrocytederived metallothionein protects dopaminergic neurons from dopamine quinone toxicity. Glia. 2011; 59(3): 435-51. CrossRef PubMed
  61. Shih AY, Johnson DA, Wong G, Kraft AD, Jiang L, Erb H, Johnson JA, Murphy TH. Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress. J Neurosci. 2003; 23(8): 3394-406. CrossRef PubMed PubMedCentral
  62. Innamorato NG, Jazwa AJ, Rojo AI, García C, FernándezRuiz J, Grochot-Przeczek A, Stachurska A, Jozkowicz A, Dulak J, Cuadrado A. Different susceptibility to the Parkinson's toxin MPTP in mice lacking the redox master regulator Nrf2 or its target gene heme oxygenase-1. PLoS One. 2010; 5(7): e11838. CrossRef PubMed PubMedCentral
  63. Bandopadhyay R, Kingsbury AE, Cookson MR, Reid AR, Evans IM, Hope AD, Pittman AM, Lashley T, CanetAviles R, Miller DW, McLendon C, Strand C, Leonard AJ, Abou-Sleiman PM, Healy DG, Ariga H, Wood NW, de Silva R, Revesz T, Hardy JA, Lees AJ. The expression of DJ-1 (PARK7) in normal human CNS and idiopathic Parkinson's disease. Brain. 2004; 127(Pt 2): 420-30. CrossRef PubMed
  64. Mullett SJ, Hamilton RL, Hinkle DA. DJ-1 immunoreactivity in human brain astrocytes is dependent on infarct presence and infarct age. Neuropathology. 2009; 29(2): 125-31. CrossRef PubMed
  65. Yanagida T, Tsushima J, Kitamura Y, Yanagisawa D, Takata K, Shibaike T, Yamamoto A, Taniguchi T, Yasui H, Taira T, Morikawa S, Inubushi T, Tooyama I, Ariga H. Oxidative stress induction of DJ-1 protein in reactive astrocytes scavenges free radicals and reduces cell injury. Oxid Med Cell Long. 2009; 2(1): 36-42. CrossRef PubMed PubMedCentral
  66. Bonifati V, Rizzu P, Squitieri F, Krieger, E, Vanacore N, van Swieten JC, Brice A, van Duijn CM, Oostra B, Meco G, Heutink P. DJ-1 (PARK7), a novel gene for autosomal recessive, early onset parkinsonism. Neurol Sci. 2003; 24(3): 159-60. CrossRef PubMed
  67. Clements CM, McNally RS, Conti BJ, Mak TW, Ting JP. DJ-1, a cancer- and Parkinson's disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. PNAS. 2006; 103(41): 15091-6. CrossRef PubMed PubMedCentral
  68. Waak J, Weber SS, Waldenmaier A, Gorner K, AlunniFabbroni M, Schell H, Vogt-Weisenhorn D, Pham TT, Reumers V, Baekelandt V, Wurst W, Kahle PJ. Regulation of astrocyte inflammatory responses by the Parkinson's diseaseassociated gene DJ-1. FASEB J. 2009; 23(8): 2478-89. CrossRef PubMed
  69. Kim JM, Cha SH, Choi, YR, Jou I, Joe EH, Park SM. DJ-1 deficiency impairs glutamate uptake into astrocytes via the regulation of flotillin-1 and caveolin-1 expression. Sci Rep. 2016; 6: 28823. CrossRef PubMed PubMedCentral
  70. Zhang Y, Meng X, Jiao Z, Liu Y, Zhang X, Qu S. Generation of a Novel mouse model of Parkinson's disease via targeted knockdown of glutamate transporter GLT-1 in the substantia nigra. ACS Chem Neurosci. 2020; 11(3): 406-17. CrossRef PubMed
  71. Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006; 7(1): 41-53. CrossRef PubMed
  72. Gray MT, Woulfe JM. Striatal blood-brain barrier permeability in Parkinson's disease. J Cerebr Blood Flow Metab. 2015; 35(5): 747-50. CrossRef PubMed PubMedCentral
  73. Sun L, Shen R, Agnihotri SK, Chen Y, Huang Z, Bueler H. Lack of PINK1 alters glia innate immune responses and enhances inflammation-induced, nitric oxide-mediated neuron death. Sci Rep. 2018; 8(1): 383. CrossRef PubMed PubMedCentral
  74. Choi I, Kim J, Jeong HK, Kim B, Jou I, Park SM, Chen L, Kang UJ, Zhuang X, Joe EH. PINK1 deficiency attenuates astrocyte proliferation through mitochondrial dysfunction, reduced AKT and increased p38 MAPK activation, and downregulation of EGFR. Glia. 2013; 61(5): 800-12. CrossRef PubMed PubMedCentral
  75. Sharma S, Bandopadhyay R, Lashley T, Renton AE, Kingsbury AE, Kumaran R, Kallis C, Vilarino-Guell C, O'Sullivan SS, Lees AJ, Revesz T, Wood NW, Holton JL. LRRK2 expression in idiopathic and G2019S positive Parkinson's disease subjects: A morphological and quantitative study. Neuropathol Appl Neurobiol. 2011; 37(7): 777-90. CrossRef PubMed
  76. Henry AG, Aghamohammadzadeh S, Samaroo H, Chen Y, Mou K, Needle E, Hirst WD. Pathogenic LRRK2 mutations, through increased kinase activity, produce enlarged lysosomes with reduced degradative capacity and increase ATP13A2 expression. Hum Mol Genet. 2015; 24(21): 6013-28. CrossRef PubMed
  77. Ho PW, Leung CT, Liu H, Pang SY, Lam CS, Xian J, Li L, Kung MH, Ramsden DB, Ho SL. Age-dependent accumulation of oligomeric SNCA/alpha-synuclein from impaired degradation in mutant LRRK2 knockin mouse model of Parkinson disease: Role for therapeutic activation of chaperone-mediated autophagy (CMA). Autophagy. 2020; 16(2): 347-70. CrossRef PubMed PubMedCentral
  78. Roosen DA, Cookson MR. LRRK2 at the interface of autophagosomes, endosomes and lysosomes. Mol Neurodegener. 2016; 11(1): 73. CrossRef PubMed PubMedCentral
  79. Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, Sideris DP, Fogel AI, Youle RJ. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature. 2015; 524(7565): 309-14. CrossRef PubMed PubMedCentral
  80. Ledesma MD, Galvan C, Hellias B, Dotti C, Jensen PH. Astrocytic but not neuronal increased expression and redistribution of parkin during unfolded protein stress. J Neurochem. 2002; 83(6): 1431-40. CrossRef PubMed
  81. Miyazaki I, Asanuma M. Neuron-astrocyte interactions in Parkinson's disease. Cells. 2020; 9(12): 2623. CrossRef PubMed PubMedCentral

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2025.