|
|
|
|
Astrocytes play critical roles in neuroinflammation and Parkinson’s disease
A.G. Nikonenko
Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz70.06.110
Abstract
Parkinson’s disease (PD) is a multifactorial disorder characterized mainly by the loss of dopaminergic
neurons in the substantia nigra of the brain. The pathogenesis of a spontaneous PD is suggested to
be multifactorial, an aberrant immune function being one of the factors influencing PD-associated
neurodegeneration. It was found that negrostriatal astrocytes get involved in this process. Astrocytes play
vital roles in brain homeostasis as well as participate in the local innate immune response triggered by a
variety of insults. Astrocytes are not immune cells, but when sensing injury-associated molecular patterns
they transform through a process called “reactivity” and become important regulators of the immune
response. However, the underlying molecular mechanisms of astrocytes’ contribution to the PD-associated
neurodegeneration are not fully understood. A better understanding of astrocyte functions in PD may provide
insights into PD pathogenesis and novel therapeutic approaches for the disease. This paper reviews the
role of astrocytes in innate immunity and PD.
Keywords:
astrocytes; neuroinflammation; Parkinson’s disease.
References
- Ball N, Teo WP, Chandra S, Chapman J. Parkinson's disease and the environment. Front Neurol. 2019; 10: 218.
CrossRef
PubMed PubMedCentral
- Tansey MG, Wallings RL, Houser MC, Herrick MK, Keating CE, Joers V. Inflammation and immune dysfunction in Parkinson disease. Nat Rev Immunol. 2022; 22(11): 657-73.
CrossRef
PubMed PubMedCentral
- Norris GT, Kipnis J. Immune cells and CNS physiology: Microglia and beyond. J Exp Med. 2019; 216(1): 60-70.
CrossRef
PubMed PubMedCentral
- Sofroniew MV. Astrocyte reactivity: Subtypes, states, and functions in CNS innate immunity. Trends Immunol. 2020; 41(9): 758-70.
CrossRef
PubMed PubMedCentral
- Sanmarco LM, Polonio CM, Wheeler MA, Quintana FJ. Functional immune cell-astrocyte interactions. J Exp Med. 2021; 218(9): e20202715.
CrossRef
PubMed PubMedCentral
- Sofroniew MV. Astrocyte cells in the brain have immune memory. Nature. 2024; 627(8005): 744-5.
CrossRef
PubMed
- Kriegstein A, Alvarez-Buylla A. The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci. 2009; 32: 149-84.
CrossRef
PubMed PubMedCentral
- Schneider J, Weigel J, Wittmann MT, Svehla P, Ehrt S, Zheng F, Elmzzahi T, Karpf J, Paniagua-Herranz L, Basak O, Ekici A, Reis A, Alzheimer C, Ortega F, Liebscher S, Beckervordersandforth R. Astrogenesis in the murine dentate gyrus is a life-long and dynamic process. EMBO J. 2022; 41(11): e110409.
CrossRef
PubMed PubMedCentral
- Quan L, Uyeda A, Muramatsu R. Central nervous system regeneration: the roles of glial cells in the potential molecular mechanism underlying remyelination. Inflamm Regen. 2022; 42(1): 7.
CrossRef
PubMed PubMedCentral
- Verkhratsky A, Pivoriūnas A. Astroglia support, regulate and reinforce brain barriers. Neurobiol Dis. 2023; 179: 106054.
CrossRef
PubMed
- Lia A, Di Spiezio A, Speggiorin M, Zonta M. Two decades of astrocytes in neurovascular coupling. Front Netw Physiol. 2023; 3: 1162757.
CrossRef
PubMed PubMedCentral
- Wang XF, Cynader MS. Astrocytes provide cysteine to neurons by releasing glutathione. J Neurochem. 2000; 74: 1434-42.
CrossRef
PubMed
- Chung RS, Penkowa M, Dittmann J, King CE, Bartlett C, Asmussen JW, Hidalgo J, Carrasco J, Leung YK, Walker AK, Fung SJ, Dunlop SA, Fitzgerald M, Beazley LD, Chuah MI, Vickers JC, West AK. Redefining the role of metallothionein within the injured brain: Extracellular metallothioneins play an important role in the astrocyteneuron response to injury. J Biol Chem. 2008; 283(22): 15349-58.
CrossRef
PubMed PubMedCentral
- Kuter KZ, Cenci MA, Carta AR. The role of glia in Parkinson's disease: Emerging concepts and therapeutic applications. Prog Brain Res. 2020; 252: 131-68.
CrossRef
PubMed
- Yi JH, Hazell AS. Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury. Neurochem Int. 2006; 48(5): 394-403.
CrossRef
PubMed
- Bernardinelli Y, Magistretti PJ, Chatton JY. Astrocytes generate Na+-mediated metabolic waves. PNAS. 2004; 101: 14937-42.
CrossRef
PubMed PubMedCentral
- Khakh BS, Sofroniew MV. Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci. 2015; 18(7): 942-52.
CrossRef
PubMed PubMedCentral
- Tsai HH, Li H, Fuentealba LC, Molofsky AV, Taveira-Marques R, Zhuang H, Tenney A, Murnen AT, Fancy SPJ, Merkle F, Kessaris N, Alvarez-Buylla A, Richardson WD, Rowitch DH. Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science. 2012; 337(6092): 358-62.
CrossRef
PubMed PubMedCentral
- Ransohoff RM, Brown MA. Innate immunity in the central nervous system. J Clin Invest. 2012; 122(4): 1164-71.
CrossRef
PubMed PubMedCentral
- Farina C, Aloisi F, Meinl E. Astrocytes are active players in cerebral innate immunity. Trends Immunol. 2007; 28(3): 138-45.
CrossRef
PubMed
- Martinon F, Tschopp J. Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell. 2004; 117(5): 561-74.
CrossRef
PubMed
- Chakraborty S, Kaushik DK, Gupta M, Basu A. Inflammasome signaling at the heart of central nervous system pathology. J Neurosci Res. 2010; 88(8): 1615-31.
CrossRef
PubMed
- Kawai T, Akira S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol. 2009; 21(4): 317-37.
CrossRef
PubMed PubMedCentral
- Downes CE, Crack PJ. Neural injury following stroke: are Toll-like receptors the link between the immune system and the CNS? Br J Pharmacol. 2010; 160(8): 1872-88.
CrossRef
PubMed PubMedCentral
- Burda JE, Bernstein AM, Sofroniew MV. Astrocyte roles in traumatic brain injury. Exp Neurol. 2016; 275 (Part 3): 305-15.
CrossRef
PubMed PubMedCentral
- Rodgers KR, Lin Y, Langan TJ, Iwakura Y, Chou RC. Innate immune functions of astrocytes are dependent upon tumor necrosis factor-alpha. Sci Rep. 2020; 10(1): 7047.
CrossRef
PubMed PubMedCentral
- Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Munch AE, Chung WS, Peterson TC, Wilton DK, Frouin A, Napier BA, Panicker N, Kumar M, Buckwalter MS, Rowitch DH, Dawson VL, Dawson TM, Stevens B, Barres BA. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017; 541: 481-7.
CrossRef
PubMed PubMedCentral
- Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, Barres BA. Genomic analysis of reactive astrogliosis. J Neurosci. 2012; 32(18): 6391-410.
CrossRef
PubMed PubMedCentral
- Matias I, Morgado J, Gomes FCA. Astrocyte heterogeneity: impact to brain aging and disease. Front Aging Neurosci. 2019; 11: 59.
CrossRef
PubMed PubMedCentral
- Wang T, Sun Y, Dettmer U. Astrocytes in Parkinson's disease: from role to possible intervention. Cells. 2023; 12(19): 2336.
CrossRef
PubMed PubMedCentral
- Habib N, McCabe C, Medina S, Varshavsky M, Kitsberg D, Dvir-Szternfeld R, Green G, Dionne D, Nguyen L, Marshall JL, Chen F, Zhang F, Kaplan T, Regev A, Schwartz M. Disease-associated astrocytes in Alzheimer's disease and aging. Nat Neurosci. 2020; 23(6): 701-6.
CrossRef
PubMed PubMedCentral
- Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, Teng YD, Frenkel D, Li J, Sidman RL, Walsh CA, Snyder EY, Khoury SJ. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. PNAS. 2004; 101(52): 18117-22.
CrossRef
PubMed PubMedCentral
- Lawrence JM, Schardien K, Wigdahl B, Nonnemacher MR. Roles of neuropathology-associated reactive astrocytes: a systematic review. Acta Neuropathol Commun. 2023; 11(1): 42.
CrossRef
PubMed PubMedCentral
- Song JH, Bellail A, Tse MC, Yong VW, Hao C. Human astrocytes are resistant to Fas ligand and tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. J Neurosci. 2006; 26(12): 3299-308.
CrossRef
PubMed PubMedCentral
- Bezzi P, Domercq M, Brambilla L, Galli R, Schols D, De Clercq E, Vescovi A, Bagetta G, Kollias G, Meldolesi J, Volterra A. CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci. 2001; 4(7): 702-10.
CrossRef
PubMed
- Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 2009; 32(12): 638-47.
CrossRef
PubMed PubMedCentral
- Bonini NM, Giasson BI. Snaring the function of alphasynuclein. Cell. 2005; 123(3): 359-61.
CrossRef
PubMed
- Holmans P, Moskvina V, Jones L, Sharma M, Vedernikov A. A pathway-based analysis provides additional support for an immune-related genetic susceptibility to Parkinson's disease. Hum Mol Genet. 2013; 22(5): 1039-49.
CrossRef
PubMed PubMedCentral
- McGeer PL, McGeer EG. Glial reactions in Parkinson's disease. Mov Disord. 2008; 23: 474-83.
CrossRef
PubMed
- Morales I, Sanchez A, Rodriguez-Sabate C, Rodriguez M. The astrocytic response to the dopaminergic denervation of the striatum. J Neurochem. 2016; 139: 81-95.
CrossRef
PubMed
- Zhu YF, Wang WP, Zheng XF, Chen Z, Chen T, Huang ZY, Jia LJ, Lei WL. Characteristic response of striatal astrocytes to dopamine depletion. Neural Regen Res. 2020; 15: 724-30.
CrossRef
PubMed PubMedCentral
- Voitenko LP, Nikonenko AG. Modification of experimental rotenone model of Parkinson's disease. Fiziol Zh. 2015; 61(1): 83-90.
CrossRef
PubMed
- Bogdaniuk AO, Nikonenko AG. Spatial dimension of nigral astrogliosis observed in rotenone model of Parkinson's disease. Fiziol Zh. 2018; 64(6): 40-6.
CrossRef
- Damier P, Hirsch EC, Zhang P, Agid Y, Javoy-Agid F. Glutathione peroxidase, glial cells and Parkinson's disease. Neuroscience. 1993; 52(1): 1-6.
CrossRef
PubMed
- Zhang P, Shao XY, Qi GJ, Chen Q, Bu LL, Chen LJ, Shi J, Ming J, Tian B. Cdk5-dependent activation of neuronal inflammasomes in Parkinson's disease. Mov Disord. 2016; 31(3): 366-76.
CrossRef
PubMed
- Collins LM, Toulouse A, Connor TJ, Nolan YM. Contributions of central and systemic inflammation to the pathophysiology of Parkinson's disease. Neuropharmacology. 2012; 62(7): 2154-68.
CrossRef
PubMed
- McGeer PL, Itagaki S, Boyes BE, McGeer EG. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology. 1988; 38(8): 1285-91.
CrossRef
PubMed
- Castano A, Herrera AJ, Cano J, Machado A. Lipopolysaccharide intranigral injection induces inflammatory reaction and damage in nigrostriatal dopaminergic system. J Neurochem. 1998; 70 (4): 1584-92.
CrossRef
PubMed
- Aloe L, Fiore M. TNF-alpha expressed in the brain of transgenic mice lowers central tyroxine hydroxylase immunoreactivity and alters grooming behavior. Neurosci Lett. 1997; 238 (1-2): 65-8.
CrossRef
PubMed
- Wang J, Zheng B, Yang S, Tang X, Wang J, Wei D. The protective effects of phoenixin-14 against lipopolysaccharide-induced inflammation and inflammasome activation in astrocytes. Inflamm Res. 2020; 69(8): 779-87.
CrossRef
PubMed
- Zhu J, Hu Z, Han X, Wang D, Jiang Q, Ding J, Xiao M, Wang C, Lu M, Hu G. Dopamine D2 receptor restricts astrocytic NLRP3 inflammasome activation via enhancing the interaction of beta-arrestin2 and NLRP3. Cell Death Differ. 2018; 25(11): 2037-49.
CrossRef
PubMed PubMedCentral
- Baba M, Nakajo S, Tu PH, Tomita T, Nakaya K, Lee VM, Trojanowski JQ, Iwatsubo T. Aggregation of alphasynuclein in Lewy bodies of sporadic Parkinson's disease and dementia with Lewy bodies. Am J Pathol. 1998; 152(4): 879-84.
- Kovacs GG, Breydo L, Green R, Kis V, Puska G, Lorincz P, Perju-Dumbrava L, Giera R, Pirker W, Lutz M, Lachmann I, Budka H, Uversky VN, Molnár K, László L. Intracellular processing of disease-associated alphasynuclein in the human brain suggests prion-like cell-tocell spread. Neurobiol Dis. 2014; 69: 76-92.
CrossRef
PubMed
- Morales I, Sanchez A, Puertas-Avendano R, RodriguezSabate C, Perez-Barreto A, Rodriguez M. Neuroglial transmitophagy and Parkinson's disease. Glia. 2020; 68(11): 2277-99.
CrossRef
PubMed
- Lee HJ, Suk JE, Patrick C, Bae EJ, Cho JH, Rho S, Hwang D, Masliah E, Lee SJ. Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem. 2010; 285(12): 9262-72.
CrossRef
PubMed PubMedCentral
- Wakabayashi K, Hayashi S, Yoshimoto M, Kudo H, Takahashi H. NACP/alpha-synuclein-positive filamentous inclusions in astrocytes and oligodendrocytes of Parkinson's disease brains. Acta Neuropathol. 2000; 99(1): 14-20.
CrossRef
PubMed
- Rose F, Hodak M, Bernholc J. Mechanism of copper(II)- induced misfolding of Parkinson's disease protein. Sci Rep. 2011; 1: 11.
CrossRef
PubMed PubMedCentral
- McLeary FA, Rcom-H'cheo-Gauthier AN, Goulding M, Radford RAW, Okita Y, Faller P, Chung RS, Pountney DL. Switching on endogenous metal binding proteins in Parkinson's disease. Cells. 2019; 8(2): 179.
CrossRef
PubMed PubMedCentral
- Michael GJ, Esmailzadeh S, Moran LB, Christian L, Pearce RK, Graeber MB. Up-regulation of metallothionein gene expression in parkinsonian astrocytes. Neurogenetics. 2011; 12(4): 295-305.
CrossRef
PubMed
- Miyazaki I, Asanuma M, Kikkawa Y, Takeshima M, Murakami S, Miyoshi K, Sogawa N, Kita T. Astrocytederived metallothionein protects dopaminergic neurons from dopamine quinone toxicity. Glia. 2011; 59(3): 435-51.
CrossRef
PubMed
- Shih AY, Johnson DA, Wong G, Kraft AD, Jiang L, Erb H, Johnson JA, Murphy TH. Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress. J Neurosci. 2003; 23(8): 3394-406.
CrossRef
PubMed PubMedCentral
- Innamorato NG, Jazwa AJ, Rojo AI, García C, FernándezRuiz J, Grochot-Przeczek A, Stachurska A, Jozkowicz A, Dulak J, Cuadrado A. Different susceptibility to the Parkinson's toxin MPTP in mice lacking the redox master regulator Nrf2 or its target gene heme oxygenase-1. PLoS One. 2010; 5(7): e11838.
CrossRef
PubMed PubMedCentral
- Bandopadhyay R, Kingsbury AE, Cookson MR, Reid AR, Evans IM, Hope AD, Pittman AM, Lashley T, CanetAviles R, Miller DW, McLendon C, Strand C, Leonard AJ, Abou-Sleiman PM, Healy DG, Ariga H, Wood NW, de Silva R, Revesz T, Hardy JA, Lees AJ. The expression of DJ-1 (PARK7) in normal human CNS and idiopathic Parkinson's disease. Brain. 2004; 127(Pt 2): 420-30.
CrossRef
PubMed
- Mullett SJ, Hamilton RL, Hinkle DA. DJ-1 immunoreactivity in human brain astrocytes is dependent on infarct presence and infarct age. Neuropathology. 2009; 29(2): 125-31.
CrossRef
PubMed
- Yanagida T, Tsushima J, Kitamura Y, Yanagisawa D, Takata K, Shibaike T, Yamamoto A, Taniguchi T, Yasui H, Taira T, Morikawa S, Inubushi T, Tooyama I, Ariga H. Oxidative stress induction of DJ-1 protein in reactive astrocytes scavenges free radicals and reduces cell injury. Oxid Med Cell Long. 2009; 2(1): 36-42.
CrossRef
PubMed PubMedCentral
- Bonifati V, Rizzu P, Squitieri F, Krieger, E, Vanacore N, van Swieten JC, Brice A, van Duijn CM, Oostra B, Meco G, Heutink P. DJ-1 (PARK7), a novel gene for autosomal recessive, early onset parkinsonism. Neurol Sci. 2003; 24(3): 159-60.
CrossRef
PubMed
- Clements CM, McNally RS, Conti BJ, Mak TW, Ting JP. DJ-1, a cancer- and Parkinson's disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. PNAS. 2006; 103(41): 15091-6.
CrossRef
PubMed PubMedCentral
- Waak J, Weber SS, Waldenmaier A, Gorner K, AlunniFabbroni M, Schell H, Vogt-Weisenhorn D, Pham TT, Reumers V, Baekelandt V, Wurst W, Kahle PJ. Regulation of astrocyte inflammatory responses by the Parkinson's diseaseassociated gene DJ-1. FASEB J. 2009; 23(8): 2478-89.
CrossRef
PubMed
- Kim JM, Cha SH, Choi, YR, Jou I, Joe EH, Park SM. DJ-1 deficiency impairs glutamate uptake into astrocytes via the regulation of flotillin-1 and caveolin-1 expression. Sci Rep. 2016; 6: 28823.
CrossRef
PubMed PubMedCentral
- Zhang Y, Meng X, Jiao Z, Liu Y, Zhang X, Qu S. Generation of a Novel mouse model of Parkinson's disease via targeted knockdown of glutamate transporter GLT-1 in the substantia nigra. ACS Chem Neurosci. 2020; 11(3): 406-17.
CrossRef
PubMed
- Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006; 7(1): 41-53.
CrossRef
PubMed
- Gray MT, Woulfe JM. Striatal blood-brain barrier permeability in Parkinson's disease. J Cerebr Blood Flow Metab. 2015; 35(5): 747-50.
CrossRef
PubMed PubMedCentral
- Sun L, Shen R, Agnihotri SK, Chen Y, Huang Z, Bueler H. Lack of PINK1 alters glia innate immune responses and enhances inflammation-induced, nitric oxide-mediated neuron death. Sci Rep. 2018; 8(1): 383.
CrossRef
PubMed PubMedCentral
- Choi I, Kim J, Jeong HK, Kim B, Jou I, Park SM, Chen L, Kang UJ, Zhuang X, Joe EH. PINK1 deficiency attenuates astrocyte proliferation through mitochondrial dysfunction, reduced AKT and increased p38 MAPK activation, and downregulation of EGFR. Glia. 2013; 61(5): 800-12.
CrossRef
PubMed PubMedCentral
- Sharma S, Bandopadhyay R, Lashley T, Renton AE, Kingsbury AE, Kumaran R, Kallis C, Vilarino-Guell C, O'Sullivan SS, Lees AJ, Revesz T, Wood NW, Holton JL. LRRK2 expression in idiopathic and G2019S positive Parkinson's disease subjects: A morphological and quantitative study. Neuropathol Appl Neurobiol. 2011; 37(7): 777-90.
CrossRef
PubMed
- Henry AG, Aghamohammadzadeh S, Samaroo H, Chen Y, Mou K, Needle E, Hirst WD. Pathogenic LRRK2 mutations, through increased kinase activity, produce enlarged lysosomes with reduced degradative capacity and increase ATP13A2 expression. Hum Mol Genet. 2015; 24(21): 6013-28.
CrossRef
PubMed
- Ho PW, Leung CT, Liu H, Pang SY, Lam CS, Xian J, Li L, Kung MH, Ramsden DB, Ho SL. Age-dependent accumulation of oligomeric SNCA/alpha-synuclein from impaired degradation in mutant LRRK2 knockin mouse model of Parkinson disease: Role for therapeutic activation of chaperone-mediated autophagy (CMA). Autophagy. 2020; 16(2): 347-70.
CrossRef
PubMed PubMedCentral
- Roosen DA, Cookson MR. LRRK2 at the interface of autophagosomes, endosomes and lysosomes. Mol Neurodegener. 2016; 11(1): 73.
CrossRef
PubMed PubMedCentral
- Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, Sideris DP, Fogel AI, Youle RJ. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature. 2015; 524(7565): 309-14.
CrossRef
PubMed PubMedCentral
- Ledesma MD, Galvan C, Hellias B, Dotti C, Jensen PH. Astrocytic but not neuronal increased expression and redistribution of parkin during unfolded protein stress. J Neurochem. 2002; 83(6): 1431-40.
CrossRef
PubMed
- Miyazaki I, Asanuma M. Neuron-astrocyte interactions in Parkinson's disease. Cells. 2020; 9(12): 2623.
CrossRef
PubMed PubMedCentral
|
|
|
|
|
|
|