Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2024; 70(5): 88-98


Gamma-Aminobutyric Acid and Brain-Derived Neurotrophic Factor Content in the Brain Structures of Rats With Alcohol Dependence and Under Exercise

A.M. Titkova, O.G. Berchenko, A.V. Shliakhova, O.V. Veselovska, N.O. Levicheva, O.O. Prikhodko

  1. SI Institute of Neurology, Psychiatry and Narcology of National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine
DOI: https://doi.org/10.15407/fz70.05.088


Abstract

The state of alcohol dependence is usually accompanied by emotional disorders, such as anxiety, depression, and aggressiveness. They arise against the background of disturbances in central neurotransmission and neurotrophic processes. Exercise is effective in restoring some damaged brain functions. The aim of our work was to identify disturbances in the g-aminobutyric acid (GABA) and brain-derived neurotrophic factor (BDNF) regulatory systems and the possibilities of their correction by exercise in rats with alcohol dependence. Alcohol dependence was modeled by ingesting food with alcohol at a dose of 1.25 g per kg body weight for 30 days, followed by alcohol withdrawal for 10 days. In rats under alcohol withdrawal, we found an imbalance of GABAergic activity between the frontal neocortex, hippocampus, and amygdala, a decrease in BDNF concentrations in the frontal neocortex, hippocampus, and serum, accompanied by increased anxiety levels. Wheel running during alcohol withdrawal (30 min daily for 10 days) restored the balance of GABA content in the brain structures and the reduced levels of BDNF (excluding reduced GABA and BDNF content in the frontal neocortex), and also reduced anxiety. Exercise increased hippocampal weight, which was decreased in alcohol-dependent animals. The negative correlation was found between indices of hippocampal weight and GABA concentration in hippocampus in intact and alcohol-dependent animals, which persisted even after exercise. The findings suggest that exercise is effective in restoring GABAergic and BDNF signaling impaired by alcohol intake. Restoration of synchronizing GABAergic regulation and BDNF levels contributes to anxiety reduction in alcohol-dependent rats

Keywords: GABA, BDNF, amygdala, hippocampus, frontal neocortex, alcohol dependence, anxiety, exercise

References

  1. Abrahao KP, Salinas AG, Lovinger DM. Alcohol and the brain: neuronal molecular targets, synapses, and circuits. Neuron. 2017;96(6):1223-38. CrossRef PubMed PubMedCentral
  2. Koob GF. Theoretical frameworks and mechanistic aspects of alcohol addiction: alcohol addiction as a reward deficit disorder. Curr Top Behav Neurosci. 2013;13: 3-30. CrossRef PubMed PubMedCentral
  3. Berchenko OG, Shliakhova AV, Veselovska OV, Titkova AM, Levicheva NO. Progesterone modulation of anxiety and dopaminergic mesolimbic system of the brain activity in rats with alcohol dependence and under conditions of zoosocial conflict. Fiziol Zh. 2023;69(5):43-50. CrossRef
  4. Tomioka R, Tomioka R, Sakimura K, Yanagawa Y. Corticofugal GABAergic projection neurons in the mouse frontal cortex. Front Neuroanat. 2015;9:133. CrossRef PubMed PubMedCentral
  5. Griffen TC, Maffei A. GABAergic synapses: their plasticity and role in sensory cortex. Front Cell Neurosci. 2014;8:91. CrossRef PubMed PubMedCentral
  6. Chakrapani S, Eskander N, De Los Santos LA, Omisore BA, Mostafa JA. Neuroplasticity and the biological role of brain derived neurotrophic factor in the pathophysiology and management of depression. Cureus. 2020;12(11):e11396. CrossRef
  7. Notaras M, van den Buuse M. Neurobiology of BDNF in fear memory, sensitivity to stress, and stress-related disorders. Mol Psychiatr 2020;25(10):2251-74. CrossRef PubMed
  8. Porcher C, Medina I, Gaiarsa J-L. Mechanism of BDNF modulation in GABAergic synaptic transmission in healthy and disease brains. Front Cell Neurosci. 2018;2:273. CrossRef PubMed PubMedCentral
  9. Marmigère F, Rage F, Tapia-Arancibia L. GABA-glutamate interaction in the control of BDNF expression in hypothalamic neurons. Neurochem Int. 2003;42(4):353-8. CrossRef PubMed
  10. Gallego X, Cox RJ, Funk E, Foster RA, Ehringer MA. Voluntary exercise decreases ethanol preference and consumption in C57BL/6 adolescent mice: sex differences and hippocampal BDNF expression. Physiol Behav. 2015;138:28-36. CrossRef PubMed PubMedCentral
  11. Maejima H, Ninuma S, Okuda A, Inoue T, Hayashi M. Exercise and low-level GABAA receptor inhibition modulate locomotor activity and the expression of BDNF accompanied by changes in epigenetic regulation in the hippocampus. Neurosci Lett. 2018;685(15):18-23. CrossRef PubMed
  12. Solomon MG. Role of BDNF in the ability of exercise to attenuate dependence-related escalated alcohol drinking in C57BL/6J mice [dissertation]. MUSC Theses and Dissertations: Medical University of South Carolina. 2019.
  13. Rodina VI, Krupina NA, Kryzhanovskii GN, Oknina NB. A multiparameter method for the complex evaluation of anxiety-phobic states in rat. Zh Vyssh Nerv Deiat im. IP Pavlova. 1993;43(5):1006-17.
  14. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 3d ed. New York: Academic Press. Inc. 1998.
  15. Ceballos N, Sharma S. Risk and resilience: the role of brain-derived neurotrophic factor in alcohol use disorder. AIMS Neurosci. 2016;3(4):398-432. CrossRef
  16. Roberto M, Madamba SG, Stouffer DG, Parsons LH, Siggins GR. Increased GABA release in the central amygdala of ethanol-dependent rats. J Neurosci. 2004;24(45):10159-66. CrossRef PubMed PubMedCentral
  17. Varodayan FP, Bajo M, Soni N, Luu G, Madamba SG, Schweitzer P, Roberto M. Chronic alcohol exposure disrupts CB1 regulation of GABAergic transmission in the rat basolateral amygdala. Addict Biol. 2017;22(3):766-78. CrossRef PubMed PubMedCentral
  18. Jie F, Yin G, Yang W, Yang M, Gao S, Lv J, Li B. Stress in regulation of GABA amygdala system and relevance to neuropsychiatric diseases. Front Neurosci. 2018;12:562. CrossRef PubMed PubMedCentral
  19. Kaplan JS, Mohr C, Rossi DJ. Opposite actions of alcohol on tonic GABA(A) receptor currents mediated by nNOS and PKC activity. Nat Neurosci. 2013;16:1783-93. CrossRef PubMed PubMedCentral
  20. Liu Z-P, Song C, Wang M, He Y, Xu X-B, Pan H-Q, Chen W-B, Peng W-J, Pan B-X. Chronic stress impairs GABAergic control of amygdala through suppressing the tonic GABAA receptor currents. Mol Brain. 2014;7:32. CrossRef PubMed PubMedCentral
  21. Qin X, Pan H-Q, Huang S-H, Zou J-X, Zheng Z-H, Liu X-X, You W-J, Liu Z-P, Cao J-L, Zhang W-H, Pan B-X. GABAA(δ) receptor hypofunction in the amygdalahippocampal circuit underlies stress-induced anxiety. Sci Bull. 2022;67(1):97-110. CrossRef PubMed
  22. Titkova AM, Berchenko OG, Veselovska OV, Shliakhova AV. Features of neurosteroid support of the state of alcohol dependence and its correction with dosed physical load in rats. Regul Mech Biosyst. 2020;11(4):546-51. CrossRef
  23. Wang GY, Zhu ZM, Cui S, Wang JH. Glucocorticoid induces incoordination between glutamatergic and GABAergic neurons in the amygdala. PLoS One. 2016;11(11):e0166535. CrossRef PubMed PubMedCentral
  24. Hu W, Zhang M, Czeh B, Flugge G, Zhang W. Stress impairs GABAergic network function in the hippocampus by activating nongenomic glucocorticoid receptors and affecting the integrity of the parvalbumin-expressing neuronal network. Neuropsychopharmacology. 2010;35(8):1693-707. CrossRef PubMed PubMedCentral
  25. Herry C, Ciocchi S, Senn V, Demmou L, Müller C. Lüthi A. Switching on and off fear by distinct neuronal circuits. Nature. 2008;454(7204):600-6. CrossRef PubMed
  26. Tovote Ph, Fadok JP, Lüthi A. Neuronal circuits for fear and anxiety. Nat Rev Neurosci. 2015;16(6):317-31. CrossRef PubMed
  27. Yang Y, Wang J-Z. From structure to behavior in basolateral amygdala-hippocampus circuits. Front Neural Circ. 2017;11:86. CrossRef PubMed PubMedCentral
  28. Chen W, Wang Y, Wang X, Li H. Neural circuits involved in the renewal of extinguished fear. Int Union Biochem Mol Biol. 2017;69(7):470-8. CrossRef PubMed
  29. Krabbe S, Gründemann J, Lüthi A. Amygdala inhibitory circuits regulate associative fear conditioning. Biol Psychiatr. 2018;83(10):800-9. CrossRef PubMed
  30. Logrip ML, Segev B, Warnault V, Ron D. Corticostriatal BDNF and alcohol addiction. Brain Res. 2015;1628 (Pt A):60-7. CrossRef PubMed PubMedCentral
  31. Vaz SH, Jørgensen TN, Cristóvão-Ferreira S, Duflot S, Ribeiro JA, Gether U, Sebastião AM. Brain-derived neurotrophic factor (BDNF) enhances GABA transport by modulating the trafficking of GABA transporter-1 (GAT1) from the plasma membrane of rat cortical astrocytes. J Biol Chem. 2011;286(47):40464-76. CrossRef PubMed PubMedCentral
  32. Yang T, Nie Z, Shu H, Kuang Y, Chen X, Cheng J, Yu S, Liu H. The role of BDNF on neural plasticity in depression. Front Cell Neurosci. 2020;14:82. CrossRef PubMed PubMedCentral
  33. Tozuka Y, Fukuda S, Namba T, Seki T, Hisatsune T. GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells. Neuron. 2005;47(6):803-15. CrossRef PubMed
  34. Giachino C, Barz M, Tchorz JS, Tome M, Gassmann M, Bischofberger J, Bettler B, Taylor V. GABA suppresses neurogenesis in the adult hippocampus through GABAB receptors. Development. 2014;141(1):83-90. CrossRef PubMed
  35. Song D, Chen Y, Chen C, Chen L, Cheng O. GABAB receptor antagonist promotes hippocampal neurogenesis and facilitates cognitive function recovery following acute cerebral ischemia in mice. Stem Cell Res Ther. 2021;12(1):22-34. CrossRef PubMed PubMedCentral

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.