SYNAPTIC PROCESSES OF GANGLION CELLS OF THE MAMMALIAN RETINA
O.I. Sholudko2, H.E. Purnyn1
- Bogomoletz Institute of Physiology of National Academy
of Sciences of Ukrainе; Kyiv, Ukraine
- Institute of Physics and Technology of National Technical
University of Ukraine “Igor Sikorsky Kyiv Polytechnic
Institute”, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz70.04.112
Abstract
To date, mammalian retinal ganglion cells have been studied
quite well, and their diversity, development, and connections
have been clarified. Fifty subtypes of these cells have already
been identified, each of which optimally encodes unique visual
capabilities and projects visual information to various targets
in the brain, where it is decoded. Some types of ganglion cells
express the photopigment melanopsin (Opn4), which makes
them directly sensitive to light. In this review, we discuss the
diversity of ganglion cells, their characteristics and differences,
and describe the structure of retinal neurons and the synaptic
processes that occur in them. Since the quality of human life
is seriously affected by retinal diseases that can lead to vision
loss, scientists are paying close attention to the causes of visual
clarity and quality and the role of retinal ganglion cells in
this process, conducting multidirectional research using new
methods and different objects for study.
Keywords:
ganglion cells; retina; melanopsin.
References
- Germain F, Pérez-Rico C, Vicente J, de La Villa P. Functional histology of the retina. In: Méndez-Vilas A and Díaz J (eds.). Microscopy: Science, Technology, Applications and Education. Formatex Research Center. Badajoz. Spain. 2010.
- Hubel DH. Eye, Brain, and Vision. Scientific American Library A division of HPHLP. New York: Paperback. 1995.
- Hoon M, Okawa H, Della Santina L, and Wong RO. Functional architecture of the retina: development and disease. Progr Retinal Eye Res. 2014;42:44-84.
CrossRef
PubMed PubMedCentral
- Maurice P, Bleau M, Bouskila J. The retina: a window into the brain. Cells. 10.12 (2021): 3269.
CrossRef
PubMed PubMedCentral
- Kolb H. How the retina works. Am Scientist. 2003;91.1: 28-35.
CrossRef
- Murcia-Belmonte V, Erskine L. Wiring the binocular visual pathways. Int J Mol Sci. 2019; 20.13: 3282.
CrossRef
PubMed PubMedCentral
- Kalargyrou AA, Guilfoyle SE, Smith AJ, Ali RR, Pearson RA. Extracellular vesicles in the retina-putative roles in physiology and disease. Front Mol Neurosci. 2023;15, 1042469.
CrossRef
PubMed PubMedCentral
Graham DM, Kwoon Y Wong. Melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs).- Webvision: The Organization of the Retina and Visual System [Intrnet]. Created: Aug 1, 2008; Last Update: Nov 2, 2016. Available from: https://www.ncbi. nlm.nih.gov/books/NBK27326/
- Aranda ML, Schmidt TM. Diversity of intrinsically photosensitive retinal ganglion cells: circuits and functions. Cell Mol Life Sci. 2021; 78, 889-907.
CrossRef
PubMed PubMedCentral
- Ko GYP. Circadian regulation in the retina: From molecules to network. Eur J Neurosci. 2020; 51(1), 194-216.
CrossRef
PubMed PubMedCentral
- Esquiva G, Lax P, Pérez-Santonja JJ, García-Fernández JM, Cuenca N. Loss of melanopsin-expressing ganglion cell subtypes and dendritic degeneration in the aging human retina. Front Aging Neurosci. 2017;9, 79.
CrossRef
PubMed PubMedCentral
- Hannibal J, Christiansen AT, Heegaard S, Fahrenkrug J, and Kiilgaard JF. Melanopsin expressing human retinal ganglion cells: Subtypes, distribution, and intraretinal connectivity. J Comp Neurol. 2017; 525(8), 1934-61.
CrossRef
PubMed
- Liao HW, Ren X, Peterson BB, Marshak DW, Yau KW, Gamlin PD, and Dacey DM. Melanopsin‐expressing ganglion cells on macaque and human retinas form two morphologically distinct populations. J Comp Neurol. 2016; 524(14), 2845-72.
CrossRef
PubMed PubMedCentral
- Mure LS. Intrinsically photosensitive retinal ganglion cells of the human retina. Front Neurol. 2021; 12, 636330.
CrossRef
PubMed PubMedCentral
- Paula KY, McAllister IL, Morgan WH, Cringle SJ, and Yu DY. Inter‑relationship of arterial supply to human retina, choroid, and optic nerve head using micro perfusion and labeling. Investigat Ophthalmol Visual Sci. 2017; 58(9), 3565-74.
CrossRef
PubMed
- Chan-Ling T. Development of the retinal vasculature. In: Encyclopedia of the Eye. v 2, Chapter 4. London: Academic Press, Elsevier Ltd, 2010.
CrossRef
- Burns SA, Elsner AE, Gast TJ. Imaging the retinal vasculature. Ann Rev Vision Sci. 2021; 7, 129-53.
CrossRef
PubMed PubMedCentral
- Aasen DM, Vergara MN. New drug discovery paradigms for retinal diseases: a focus on retinal organoids. J Ocular Pharmacol Ther. 2020; 36(1), 18-24.
CrossRef
PubMed PubMedCentral
- Wu SM. Synaptic organization of the vertebrate retina: general principles and species-specific variations: the Friedenwald lecture. Investigat Ophthalmol Visual Sci. 2010; 51(3), 1264-74.
CrossRef
PubMed PubMedCentral
- Masland RH. The neuronal organization of the retina. Neuron. 2012; 76(2), 266-80.
CrossRef
PubMed PubMedCentral
- D'Souza S, Lang RA. Retinal ganglion cell interactions shape the developing mammalian visual system. Development. 2020; 147(23) dev196535.
CrossRef
PubMed PubMedCentral
- Guillery RW, Mason CA, Taylor JS. Developmental determinants at the mammalian optic chiasm. J Neurosci. 1995; 15(7), 4727-37.
CrossRef
PubMed PubMedCentral
- Mehra D, Moshirfar M. Neuroanatomy, Optic Tract. In: StatPearls [Internet]. Treasure Island (Fl): StatPearls Publ; 2024 Jan. 2023 Jul 24. PMID: 31751030.
- Zhu JD, Tarachand SP, Abdulwahab Q, Samuel MA. Structure, function, and molecular landscapes of the aging retina. Ann Rev Vis Sci. 2023; 9: 177-99.
CrossRef
PubMed PubMedCentral
- Ludwig AL, Mayerl SJ, Gao Y, Banghart M, Bacig C, Fernandez Zepeda MA, Gamm, DM. Re-formation of synaptic connectivity in dissociated human stem cellderived retinal organoid cultures. Proc Natl Acad Sci USA. 2023; 120(2):e2213418120.
CrossRef
PubMed PubMedCentral
- Hamilton NR, Scasny AJ, Kolodkin AL. Development of the vertebrate retinal direction-selective circuit. Dev Biol. 2021; 477, 273-83.
CrossRef
PubMed PubMedCentral
- Völgyi B, Kovács-Öller T, Atlasz T, Wilhelm M, Gábriel R. Gap junctional coupling in the vertebrate retina: variations on one theme. Prog Retinal Eye Res. 2013; 34: 1-18.
CrossRef
PubMed
Roy K, Kumar S, Bloomfield SA. Gap junctional coupling between retinal amacrine and ganglion cells underlies coherent activity integral to global object perception. Proc Natl Acad Sci USA. 2017; 114(48): E10484-E10493
CrossRef
PubMed PubMedCentral
- Vaughn MJ, Haas JS. On the diverse functions of electrical synapses. Front Cell Neurosci. 2022; 16.
CrossRef
PubMed PubMedCentral
- Hidaka S, Akahori Y, Kurosawa Y. Dendrodendritic electrical synapses between mammalian retinal ganglion cells. J Neurosci. 2004; 24(46).
CrossRef
PubMed PubMedCentral
- Frederick CE, Zenisek D. Ribbon synapses and retinal disease. Int J Mol Sci. 2023; 24(6): 910015.
CrossRef
PubMed PubMedCentral
- Jain V, Murphy-Baum BL, deRosenroll G, Sethuramanujam S, Delsey M, Delaney KR, and Awatramani GB. The functional organization of excitation and inhibition in the dendrites of mouse direction-selective ganglion cells. Elife. 2020; 9: 52949.
CrossRef
PubMed PubMedCentral
- Van Hook MJ, Nawy S, Thoreson WB. Voltage-and calcium-gated ion channels of neurons in the vertebrate retina. Prog Retinal Eye Res. 2019; 72, 100760.
CrossRef
PubMed PubMedCentral
- Young BK, Ramakrishnan C, Ganjawala T, Wang P, Deisseroth K, and Tian N. An uncommon neuronal class conveys visual signals from rods and cones to retinal ganglion cells. Proc Natl Acad Sci USA. 2021; 118(44), e2104884118.
CrossRef
PubMed PubMedCentral
- Voufo C, Chen AQ, Smith BE, Yan R, Feller MB, and Tiriac A. Circuit mechanisms underlying embryonic retinal waves. Elife. 2023; 12, 81983.
CrossRef
PubMed PubMedCentral
- Kerschensteiner D. Glutamatergic retinal waves. Front Neural Circ. [Published online] 2016; 10, 38, 00038; PMID: 27242446.
CrossRef
PubMed PubMedCentral
- Zhang K, Su A, Wang Y, Crair MC. Acetylcholine promotes directionally biased glutamatergic retinal waves. bioRxiv. Preprint 2023/11/10/566639: PMID: 38014271.
CrossRef
|