Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2024; 70(4): 112-120


SYNAPTIC PROCESSES OF GANGLION CELLS OF THE MAMMALIAN RETINA

O.I. Sholudko2, H.E. Purnyn1

  1. Bogomoletz Institute of Physiology of National Academy of Sciences of Ukrainе; Kyiv, Ukraine
  2. Institute of Physics and Technology of National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz70.04.112


Abstract

To date, mammalian retinal ganglion cells have been studied quite well, and their diversity, development, and connections have been clarified. Fifty subtypes of these cells have already been identified, each of which optimally encodes unique visual capabilities and projects visual information to various targets in the brain, where it is decoded. Some types of ganglion cells express the photopigment melanopsin (Opn4), which makes them directly sensitive to light. In this review, we discuss the diversity of ganglion cells, their characteristics and differences, and describe the structure of retinal neurons and the synaptic processes that occur in them. Since the quality of human life is seriously affected by retinal diseases that can lead to vision loss, scientists are paying close attention to the causes of visual clarity and quality and the role of retinal ganglion cells in this process, conducting multidirectional research using new methods and different objects for study.

Keywords: ganglion cells; retina; melanopsin.

References

  1. Germain F, Pérez-Rico C, Vicente J, de La Villa P. Functional histology of the retina. In: Méndez-Vilas A and Díaz J (eds.). Microscopy: Science, Technology, Applications and Education. Formatex Research Center. Badajoz. Spain. 2010.
  2. Hubel DH. Eye, Brain, and Vision. Scientific American Library A division of HPHLP. New York: Paperback. 1995.
  3. Hoon M, Okawa H, Della Santina L, and Wong RO. Functional architecture of the retina: development and disease. Progr Retinal Eye Res. 2014;42:44-84. CrossRef PubMed PubMedCentral
  4. Maurice P, Bleau M, Bouskila J. The retina: a window into the brain. Cells. 10.12 (2021): 3269. CrossRef PubMed PubMedCentral
  5. Kolb H. How the retina works. Am Scientist. 2003;91.1: 28-35. CrossRef
  6. Murcia-Belmonte V, Erskine L. Wiring the binocular visual pathways. Int J Mol Sci. 2019; 20.13: 3282. CrossRef PubMed PubMedCentral
  7. Kalargyrou AA, Guilfoyle SE, Smith AJ, Ali RR, Pearson RA. Extracellular vesicles in the retina-putative roles in physiology and disease. Front Mol Neurosci. 2023;15, 1042469. CrossRef PubMed PubMedCentral
  8. Graham DM, Kwoon Y Wong. Melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs).- Webvision: The Organization of the Retina and Visual System [Intrnet]. Created: Aug 1, 2008; Last Update: Nov 2, 2016. Available from: https://www.ncbi. nlm.nih.gov/books/NBK27326/
  9. Aranda ML, Schmidt TM. Diversity of intrinsically photosensitive retinal ganglion cells: circuits and functions. Cell Mol Life Sci. 2021; 78, 889-907. CrossRef PubMed PubMedCentral
  10. Ko GYP. Circadian regulation in the retina: From molecules to network. Eur J Neurosci. 2020; 51(1), 194-216. CrossRef PubMed PubMedCentral
  11. Esquiva G, Lax P, Pérez-Santonja JJ, García-Fernández JM, Cuenca N. Loss of melanopsin-expressing ganglion cell subtypes and dendritic degeneration in the aging human retina. Front Aging Neurosci. 2017;9, 79. CrossRef PubMed PubMedCentral
  12. Hannibal J, Christiansen AT, Heegaard S, Fahrenkrug J, and Kiilgaard JF. Melanopsin expressing human retinal ganglion cells: Subtypes, distribution, and intraretinal connectivity. J Comp Neurol. 2017; 525(8), 1934-61. CrossRef PubMed
  13. Liao HW, Ren X, Peterson BB, Marshak DW, Yau KW, Gamlin PD, and Dacey DM. Melanopsin‐expressing ganglion cells on macaque and human retinas form two morphologically distinct populations. J Comp Neurol. 2016; 524(14), 2845-72. CrossRef PubMed PubMedCentral
  14. Mure LS. Intrinsically photosensitive retinal ganglion cells of the human retina. Front Neurol. 2021; 12, 636330. CrossRef PubMed PubMedCentral
  15. Paula KY, McAllister IL, Morgan WH, Cringle SJ, and Yu DY. Inter‑relationship of arterial supply to human retina, choroid, and optic nerve head using micro perfusion and labeling. Investigat Ophthalmol Visual Sci. 2017; 58(9), 3565-74. CrossRef PubMed
  16. Chan-Ling T. Development of the retinal vasculature. In: Encyclopedia of the Eye. v 2, Chapter 4. London: Academic Press, Elsevier Ltd, 2010. CrossRef
  17. Burns SA, Elsner AE, Gast TJ. Imaging the retinal vasculature. Ann Rev Vision Sci. 2021; 7, 129-53. CrossRef PubMed PubMedCentral
  18. Aasen DM, Vergara MN. New drug discovery paradigms for retinal diseases: a focus on retinal organoids. J Ocular Pharmacol Ther. 2020; 36(1), 18-24. CrossRef PubMed PubMedCentral
  19. Wu SM. Synaptic organization of the vertebrate retina: general principles and species-specific variations: the Friedenwald lecture. Investigat Ophthalmol Visual Sci. 2010; 51(3), 1264-74. CrossRef PubMed PubMedCentral
  20. Masland RH. The neuronal organization of the retina. Neuron. 2012; 76(2), 266-80. CrossRef PubMed PubMedCentral
  21. D'Souza S, Lang RA. Retinal ganglion cell interactions shape the developing mammalian visual system. Development. 2020; 147(23) dev196535. CrossRef PubMed PubMedCentral
  22. Guillery RW, Mason CA, Taylor JS. Developmental determinants at the mammalian optic chiasm. J Neurosci. 1995; 15(7), 4727-37. CrossRef PubMed PubMedCentral
  23. Mehra D, Moshirfar M. Neuroanatomy, Optic Tract. In: StatPearls [Internet]. Treasure Island (Fl): StatPearls Publ; 2024 Jan. 2023 Jul 24. PMID: 31751030.
  24. Zhu JD, Tarachand SP, Abdulwahab Q, Samuel MA. Structure, function, and molecular landscapes of the aging retina. Ann Rev Vis Sci. 2023; 9: 177-99. CrossRef PubMed PubMedCentral
  25. Ludwig AL, Mayerl SJ, Gao Y, Banghart M, Bacig C, Fernandez Zepeda MA, Gamm, DM. Re-formation of synaptic connectivity in dissociated human stem cellderived retinal organoid cultures. Proc Natl Acad Sci USA. 2023; 120(2):e2213418120. CrossRef PubMed PubMedCentral
  26. Hamilton NR, Scasny AJ, Kolodkin AL. Development of the vertebrate retinal direction-selective circuit. Dev Biol. 2021; 477, 273-83. CrossRef PubMed PubMedCentral
  27. Völgyi B, Kovács-Öller T, Atlasz T, Wilhelm M, Gábriel R. Gap junctional coupling in the vertebrate retina: variations on one theme. Prog Retinal Eye Res. 2013; 34: 1-18. CrossRef PubMed
  28. Roy K, Kumar S, Bloomfield SA. Gap junctional coupling between retinal amacrine and ganglion cells underlies coherent activity integral to global object perception. Proc Natl Acad Sci USA. 2017; 114(48): E10484-E10493 CrossRef PubMed PubMedCentral
  29. Vaughn MJ, Haas JS. On the diverse functions of electrical synapses. Front Cell Neurosci. 2022; 16. CrossRef PubMed PubMedCentral
  30. Hidaka S, Akahori Y, Kurosawa Y. Dendrodendritic electrical synapses between mammalian retinal ganglion cells. J Neurosci. 2004; 24(46). CrossRef PubMed PubMedCentral
  31. Frederick CE, Zenisek D. Ribbon synapses and retinal disease. Int J Mol Sci. 2023; 24(6): 910015. CrossRef PubMed PubMedCentral
  32. Jain V, Murphy-Baum BL, deRosenroll G, Sethuramanujam S, Delsey M, Delaney KR, and Awatramani GB. The functional organization of excitation and inhibition in the dendrites of mouse direction-selective ganglion cells. Elife. 2020; 9: 52949. CrossRef PubMed PubMedCentral
  33. Van Hook MJ, Nawy S, Thoreson WB. Voltage-and calcium-gated ion channels of neurons in the vertebrate retina. Prog Retinal Eye Res. 2019; 72, 100760. CrossRef PubMed PubMedCentral
  34. Young BK, Ramakrishnan C, Ganjawala T, Wang P, Deisseroth K, and Tian N. An uncommon neuronal class conveys visual signals from rods and cones to retinal ganglion cells. Proc Natl Acad Sci USA. 2021; 118(44), e2104884118. CrossRef PubMed PubMedCentral
  35. Voufo C, Chen AQ, Smith BE, Yan R, Feller MB, and Tiriac A. Circuit mechanisms underlying embryonic retinal waves. Elife. 2023; 12, 81983. CrossRef PubMed PubMedCentral
  36. Kerschensteiner D. Glutamatergic retinal waves. Front Neural Circ. [Published online] 2016; 10, 38, 00038; PMID: 27242446. CrossRef PubMed PubMedCentral
  37. Zhang K, Su A, Wang Y, Crair MC. Acetylcholine promotes directionally biased glutamatergic retinal waves. bioRxiv. Preprint 2023/11/10/566639: PMID: 38014271. CrossRef

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2025.