Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2024; 70(4): 22-32


EFFECT OF DRUGS WITH METABOLIC ACTION ON OXIDATIVE STRESS DEVELOPMENT IN PATIENTS WITH TYPE 2 DIABETES MELLITUS

Ya.A. Saenko1, O.O. Gonchar2, I.M. Mankovska2, T.I. Drevytska2, O.O. Klymenko2, B.M. Mankovsky1

  1. Government Institution The Scientific and Practical Medical Center of Pediatric Cardiology and CardiacSurgery of the Ministry of Health of Ukraine, Kyiv, Ukraine
  2. Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz70.04.022


Abstract

It was shown that the combined oral use of drugs with a metabolic effect - armadine at a dose of 300 mg per day and trizipin at a dose of 500 mg per day for 60 days led to inhibition of the oxidative stress damaging effect on its molecular genetic targets - proteins, lipids, and DNA - in blood of patients with type 2 diabetes mellitus (DM2). This is evidenced by a decrease in the proteins’ oxidative modification level and the content of lipid peroxidation secondary products in blood plasma and changes in the expression of the transcription factor HIF-1α and the regulatory protein mTOR genes in leukocytes of patients with DM2. This occurred against the background of a fall in the hydrogen peroxide production in erythrocytes of patients with DM2 and an increase in the activity of antiradical defense and the glutathione antioxidant system in plasma and erythrocytes of these patients after treatment. Genetic studies indicated that the use of armadine in combination with trizipin significantly raised the expression of the HIF-1α gene and reduced the decrease in the expression of the mTOR gene in blood leukocytes of patients with type 2 diabetes mellitus. The established changes can serve as a protective mechanism that counteracts the development of oxidative damage of macromolecules through various signaling metabolic pathways.

Keywords: armadine; trizipin; oxidative stress; HIF-1α; mTOR; type 2 diabetes mellitus

References

  1. Kayama Y, Raaz U, Jagger A, Adam M, Schellinger I, Sakamoto M, Suzuki H, Toyama K, Spin JM, Tsao PS. Diabetic сardiovascular disease induced by oxidative stress. Int J Mol Sci. 2015;16(10):25234-63. CrossRef PubMed PubMedCentral
  2. Moussa SA. Oxidative stress in diabetes mellitus. Roman J Biophys. 2008;18:225-36.
  3. Mellbin LG, Anselmino M, Lars R. Diabetes, prediabetes and cardiovascular risk. Eur J Cardiovascul Prev Rehabil. 2010;17(1_suppl):s9-14. CrossRef PubMed
  4. Mokryi VYa, Ziablitsev SV, Borys RM. Violations of the system of lipid peroxidation in type 2 diabetes mellitus. Mìzhnar Endokrin Zh. 2021;17(7.71):41-4. [Ukrainian]. CrossRef
  5. Gunton JE. Hypoxia-inducible factors and diabetes. J Clin Invest. 2020;130(10):5063-73. CrossRef PubMed PubMedCentral
  6. Maiese K. Novel nervous and multi-system regenerative therapeutic strategies for diabetes mellitus with mTOR. Neural Regen Res. 2016;11(3):372-85. CrossRef PubMed PubMedCentral
  7. Saenko Y, Gonchar O, Mankovska I, Drevytska T, Bratus L, Mankovsky B. Oxidative stress in type 2 diabetic patients: involvement of HIF-1 alpha AND mTOR genes expression. Ukr Biochem J. 2023;95(2):48-57. CrossRef
  8. Chekman IS, Gorchakova NO, Nagorna OO, Nebesna TU. Nicotinamide. Кyiv: Polygraph Plus. 2008.
  9. Gorchakova NO. Meldonium prolonged medicinal form (Trizipin® long) -acquisition of national pharmacology and pharmacy. Ukr Med Chasopis. 2015;51-3. [Ukrainian].
  10. Mankovska IM, Gonchar OO, Bratus LV. The effect of mexidol on glutathione system in rat brain under modeling of Parkinson's disease. Fiziol Zh. 2022;68(1):13-9. [Ukrainian]. CrossRef
  11. Gonchar OO, Klymenko OO, Drevytska TI, Bratus LV, Mankovska IM. Oxidative stress in rat heart mitochondria under a rotenone model of Parkinson' disease: a corrective effect of capicor treatment. Ukr Biochem J. 2021;93(5):21-30. CrossRef
  12. Mankovska IM, Rosova KV, Gonchar OO, Nosar VI, Bratus LV, Drevitska TI, Glazyrin ID, Karasevich NV, Karaban IM. Effect of capicor on the Parkinson's disease pathogenic links. Fiziol Zh. 2018; 64(1):16-24. [Ukrainian].
  13. Saenko YA, Gonchar OO, Mankovska IM, Drevytska TI, Bratus LV, Mankovsky BМ. The effect of actovegyn on the mechanisms of oxidative stress developing in patients with type 2 diabetes mellitus and cardiovascular autonomic neuropathy. Fiziol Zh. 2023;69(5):12-21. [Ukrainian].
  14. Pandey KB, Mishra N, Rizvi SI. Protein oxidation biomarkers in plasma of type 2 diabetic patients. Clin Biochem. 2010; 43(4-5):508-11. CrossRef PubMed
  15. Kumawat M, Pahwa MB, Gahlaut VS, Singh N. Status of antioxidant enzymes and lipid peroxidation in type 2 diabetes mellitus with microvascular complications. Open Endocrinol J. 2009;3:12-5. CrossRef
  16. Niedowicz DM, Daleke DL. The role of oxidative stress in diabetic complications. Cell Biochem Biophys. 2005;43(2):289-330. CrossRef PubMed
  17. Soliman GZA. Blood lipid peroxidation (superoxide dismutase, malondialdehyde, glutathione) levels in Egyptian type 2 diabetes patients. Singapore Med J. 2008;49:129-36.
  18. Yefimov AS, Naumenko VG. Lipid peroxidation in erythrocytes of diabetic patients with diabetic angiopathy. Probl Endocrinol. 1985;(1):6-9. [Ukrainian].
  19. Bandeira S de M, Guedes Gda S, da Fonseca LJ, Pires AS, Gelain DP, Moreira JC, Rabelo LA, Vasconcelos SM, Goulart MO. Characterization of blood oxidative stress in type 2 diabetes mellitus patients: increase in lipid peroxidation and SOD activity. Oxid Med Cell Long. 2012;2012:1-13. CrossRef PubMed PubMedCentral
  20. Promyos N, Phienluphon PP, Wechjakwen N, Lainampetch J, Prangthip P, Kwanbunjan K. Inverse correlation of superoxide dismutase and catalase with type 2 diabetes among rural thais. Nutrients. 2023;15(9):2071. CrossRef PubMed PubMedCentral
  21. Mendez MM, Folgado J, Tormo C, Artero A, Ascaso M, Martinez-Hervás S, Chaves FJ, Ascaso JF, Real JT. Altered glutathione system is associated with the presence of distal symmetric peripheral polyneuropathy in type 2 diabetic subjects. J Diabet Complicat. 2015;29(7):923-7. CrossRef PubMed
  22. Kolesnichenko T, Bardimova E, Sergeeva M, Sergeeva N, Verlan N, Belousova I. Glutathione antioxidant system in patients with diabetes mellitus. 2008;2(5). J Clin Lipid. 2008;2(5):124-5.
  23. Torshin IYu, Gromova OA, Sardaryan IS, Fedotova LE. A comparative chemoreactome analysis of mexidol. Zh Nevrol Psikhiatr. 2017;117(2):75. CrossRef PubMed
  24. Voronina ТА. Cognitive impairment and nootropic drugs: mechanism of action and spectrum of effects. Neurochem J. 2023;17(2):180-8. CrossRef
  25. Reisman SA, Lee CYI, Meyer CJ, Proksch JW, Ward KW. Topical application of the synthetic triterpenoid RTA 408 activates Nrf2 and induces cytoprotective genes in rat skin. Arch Dermatol Res. 2013;306(5):447-54. CrossRef PubMed
  26. Klusa V, Beitnere U, Pupure J. Mildronate and its neuroregulatory mechanisms:targeting the mitochondria, neuroinflammation, and protein expression. Medicina (Kaunas). 2013;49(7):301-9. CrossRef
  27. López-Cano C, Gutiérrez-Carrasquilla L, Barbé F, Sánchez E, Hernández M, Martí R, Ceperuelo-Mallafre V, Dalmases M, Fernández-Veledo S, Vendrell J, Hernández C, Simó R, Lecube A. Effect of type 2 diabetes mellitus on the hypoxia-inducible factor 1-alpha expression. Is there a relationship with the clock genes? J Clin Med. 2020;9(8):2632-2. CrossRef PubMed PubMedCentral
  28. Zavhorodnii MO, Nosar VI, Gonchar OO, Tsapenko PK, Kozlovska MG, Vasylenko MI, Portnichenko VI, Portnychenko AG. Blockade of L-type calcium channels alters hepatic mitochondrial function in insulin-resistant rats. Fìziol Zh. 2023;69(6):88-96. CrossRef
  29. Persson P, Palm F. Hypoxia-inducible factor activation in diabetic kidney disease. Curr Opin Nephrol Hyperten. 2017;26(5):345-50. CrossRef PubMed
  30. Laplante M, Sabatini David M. mTOR signaling in growth control and disease. Cell. 2012;149(2):274-93. CrossRef PubMed PubMedCentral
  31. Yu T, Li L, Chen T, Liu Z, Liu H, Li Z. Erythropoietin attenuates advanced glycation endproducts-induced toxicity of Schwann cells in vitro. Neurochem Res. 2015;40(4):698-712. CrossRef PubMed
  32. Sanghera KP, Mathalone N, Baigi R, Panov E, Wang D, Zhao X, Hsu H, Wang H, Tropepe V, Ward M, Boyd SR. The PI3K/Akt/mTOR pathway mediates retinal progenitor cell survival under hypoxic and superoxide stress. Mol Cell Neurosci. 2011;47(2):145-53. CrossRef PubMed
  33. Wang L, Di L, Noguchi CT. AMPK is involved in mediation of erythropoietin influence on metabolic activity and reactive oxygen species production in white adipocytes. Int J Biochem Cell Biol. 2014;54:1-9. CrossRef PubMed PubMedCentral
  34. Mao Z, Zhang W. Role of mTOR in glucose and lipid metabolism. Int J Mol Sci. 2018; 19(7):2043. CrossRef PubMed PubMedCentral

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2025.