Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2024; 70(3): 88-96


INFLUENCE OF MELATONIN ON THE DEVELOPMENT OF OBESITY AND OSTEOPOROSIS

I.G. Litovka1, T.G. Shcherbatiuk2

  1. Bohomolets Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
  2. Kyiv National University of Technology and Design, Ukraine
DOI: https://doi.org/10.15407/fz70.03.088


Abstract

The review of modern literature presents data on the prevalence of obesity and osteoporosis in Ukraine and the world. These diseases are associated with severe and persistent symptoms, slow recovery, and a significant negative impact on patients’ quality of life. Melatonin is a hormone with enormous biological functions. As a widely available and versatile molecule in vivo, it has powerful antioxidant and anti-inflammatory properties in various bone diseases, has an effect on the restoration of damaged tissues, helps to reduce the amount of visceral adipose tissue and improves eating behavior. However, the informational analysis of the problem showed that there are still many unsolved questions regarding the optimal dosage and timing of melatonin administration, as well as the study of any possible side effects during its longterm administration. At the same time, the study of the effect of melatonin on the state of the bone system in obesity can contribute to a deeper understanding of the pathogenesis of both osteopenic and metabolic syndromes for the development of new methods of treatment and prevention.

Keywords: melatonin; obesity; bone tissue.

References

  1. Blüher M. Obesity: global epidemiology and pathogenesis. Nature reviews. Endocrinology, 2019; 15(5):288-98. CrossRef PubMed
  2. Genario R, Cipolla-Neto J, Bueno AA, Santos HO. Melatonin supplementation in the management of obesity and obesity-associated disorders: a review of physiological mechanisms and clinical applications. Pharmacol Res. 2021; 163:105254. CrossRef PubMed
  3. Curtis EM, van der Velde R, Moon RJ, et al. Epidemiology of fractures in the United Kingdom 1988-2012: Variation with age, sex, geography, ethnicity and socioeconomic status. Bone. 2016; 87:19-26. CrossRef PubMed PubMedCentral
  4. Huanshuai Guan, Ning Kong, Run Tian, et al. Melatonin increases bone mass in normal, perimenopausal, and postmenopausal osteoporotic rats via the promotion of osteogenesis. J Transl Med. 2022;20:132-47. CrossRef PubMed PubMedCentral
  5. Guzon-Illescas O, Perez Fernandez E, Crespí Villarias N. Mortality after osteoporotic hip fracture: incidence, trends, and associated factors. J Orthop Surg Res. 2019; 14:203-12. CrossRef PubMed PubMedCentral
  6. Ali D, Tencerova M, Figeac F, Kassem M, Jafari A. The pathophysiology of osteoporosis in obesity and type 2 diabetes in aging women and men: The mechanisms and roles of increased bone marrow adiposity. Front Endocrinol (Lausanne). 2022; 13: 981487. CrossRef PubMed PubMedCentral
  7. Compston JE, McClung MR, Leslie WD. Osteoporosis. Lancet. 2019; 393:364-76. CrossRef PubMed
  8. Savvidis C, Tournis S, Dede AD. Obesity and bone metabolism. Hormones. 2018; 17:205-17. CrossRef PubMed
  9. Genario R, Cipolla-Neto J, Bueno AA, Santos HO. Melatonin supplementation in the management of obesity and obesity-associated disorders: A review of physiological mechanisms and clinical applications. Pharmacol Res. 2021;163:105254. CrossRef PubMed
  10. Ferlazzo N, Andolina G, Cannata A, Costanzo MG. Is melatonin the cornucopia of the 21st century? Antioxidants. 2020; 9:1088. CrossRef PubMed PubMedCentral
  11. Malakoti F, Zare F, Zarezadeh R, Sadigh AR. The role of melatonin in bone regeneration: A review of involved signaling pathways. Biochimie. 2022; 202:56-70. CrossRef PubMed
  12. Maria S, Samsonraj RM, Munmun F. Biological effects of melatonin on osteoblast/osteoclast cocultures, bone, and quality of life: Implications of a role for MT2 melatonin receptors, MEK1/2, and MEK5 in melatonin-mediated osteoblastogenesis. J Pineal Res. 2018; 64(3):e12465. CrossRef PubMed PubMedCentral
  13. Maria S, Swanson MH, Enderby LT. Melaton in micronutrients osteopenia treatment study (MOTS): a translational study assessing melatonin, strontium (citrate), vitamin D3 and vitamin K2 (MK7) on bone density, bone marker turnover and health related quality of life in postmenopausal osteopenic women following a oneyear double-blind RCT and on osteoblastosteoclast cocultures. Aging (Albany NY). 2017; 9(1):256-85. CrossRef PubMed PubMedCentral
  14. Health Index. Ukraine - 2019: Results national research. Kyiv: Health Index Ukraine; 2020 (http://health-index. com.ua/HI Report 2019 Preview.pdf).
  15. STEPS: prevalence of noncommunicable disease risk factors in Ukraine 2019. Copenhagen: WHO Regional Office for Europe; 2020. Licence: CC BY-NC-SA 3.0 IGO.
  16. Statistical Yearbook of Ukraine for 2021. State Statistics Service of Ukraine. K.: Information and Analytical Agency. 2022. [Ukrainian].
  17. Hryhor'eva NV, Kovalenko VM, Korzh MO, Tatarchuk TF. et all Recommendations for diagnosis, prevention and treatment of postmenopausal osteoporosis. Pain Joints Spine. 2023; 13(3):1-30. [Ukrainian]. CrossRef
  18. Escobar-Morreale HF, Santacruz E, Luque-Ramírez M, BotellaCarretero JI. Prevalence of 'obesity-associated gonadal dysfunction' in severely obese men and women and its resolution after bariatric surgery: a systematic review andmeta-analysis. Hum Reprod Update. 2017; 9:1-19. CrossRef PubMed
  19. Klockars A, Levine AS, Olszewski PK. Hypothalamic integration of the endocrine signaling related to food intake. Curr Top Behav Neurosci, 2019;43:239-69. CrossRef PubMed
  20. Fleet JC, Schoch RD. Molecular mechanisms for regulation of intestinal calcium absorption by vitamin D and other factors. Crit Rev Clin Lab Sci. 2010; 47:181-95. CrossRef PubMed PubMedCentral
  21. Karra E, Batterham RL. The role of gut hormones in the regulation of body weight and energy homeostasis. Mol Cell Endocrinol. 2010;316:120-28. CrossRef PubMed
  22. Markovic TP, Natoli SJ. Paradoxical nutritional deficiency in overweight and obesity: the importance of nutrient density. Med J. 2009;190:149-51. CrossRef PubMed
  23. Grethen E, Hill KM, Jones R, Cacucci BM, Gupta CE. Serum leptin, parathyroid hormone, 1,25-dihydroxyvitamin D, fibroblast growth factor 23, bone alkaline phosphatase, and sclerostin relationships in obesity. J Clin Endocrinol Metab. 2012; 97:1655-62. CrossRef PubMed PubMedCentral
  24. Hsu Y-H, Venners SA, Terwedow HA, Feng Y. Relation of body composition, fat mass, and serum lipids to osteoporotic fractures and bone mineral density in Chinese men and women. Am J Clin Nutr. 2006;83:146-54. CrossRef PubMed
  25. Greco EA, Lenzi A, Migliaccio S. The obesity of bone. Ther Adv Endocrinol Metab. 2015; 6(6): 273-86. CrossRef PubMed PubMedCentral
  26. von Muhlen D, Safii S, Jassal SK, Svartberg J, BarrettConnor E.Associations between the metabolic syndrome and bone health in older men and women: the Rancho Bernardo Study. Osteoporos Int. 2007;18(10):1337-44. CrossRef PubMed
  27. de Paula FJA, Rosen CJ. Bone remodeling and energy metabolism: New perspectives. Bone Res. 2013; 1(1): 72-84. CrossRef PubMed PubMedCentral
  28. Wong SK, Chin K-Y, Suhaimi FH, Ahmad F, ImaNirwana S. The relationship between metabolic syndrome and osteoporosis: A review. Nutrients. 2016; 8(6): 347-65. CrossRef PubMed PubMedCentral
  29. Pitroda AP, Harris SS, Dawson-Hughes B. The association of adiposity with parathyroid hormone in healthy older adults. Endocrinology. 2009;36:218-23. CrossRef PubMed PubMedCentral
  30. Shapses SA, Pop C, Schneider SH. Vitamin D in obesity and weight Loss. In: Weaver CM, Daly RM, BischoffFerrari H (editors). Nutritional Aspects of Osteoporosis. London, Springer. 2016;9-16. CrossRef
  31. Mateos CG-F, Cayón-Blanco M. Weighthas a weak influence on calcium-phosphorus metabolismin HIV-patients with vitamin D deficiency. 2017:19th European Congress of Endocrinology Endocrine Abstracts. 2017; 49:52. CrossRef
  32. Mishchuk VG, Hryhoruk GV. Pleiotropic effects of a synthetic analogue of melatonin in the complex therapy of comorbid pathology with a combination of obesity, arterial hypertension and irritable bowel syndrome with constipation. 2022; 3(1):41-7. [Ukrainian].
  33. Sviridova NK, Balkina ISH, Karpenko NO. Peculiarities of using melatonin in modern conditions - successful experience and new opportunities. Ukr Therap J. 2021; 3:47-59. [Ukrainian]. CrossRef
  34. Bartness TJ., Wade GN. Photoperiodic control of body weight and energy metabolism in Syrian hamsters (Mesocricetus auratus): Role of pineal gland, melatonin, gonads, and diet. Endocrinology. 1984;114:492-8. CrossRef PubMed
  35. Genario R, Cipolla-Neto J, Bueno AA, Santos HO. Melatonin supplementation in the management of obesity and obesity-associated disorders: A review of physiological mechanisms and clinical applications. Pharmacol Res. 2021;163:105254. CrossRef PubMed
  36. Tamura I, Tamura H, Kawamoto-Jozaki M, Doi-Tanaka Y, et al. Long-term melatonin treatment attenuates body weight gain with aging in female mice. Endocrinology. 2021; 251:15-25. CrossRef PubMed
  37. Onaolapo AY, Adebisi EO, Adeleye AE, Olofinnade AT, Onaolapo OJ. Dietary melatonin protects against behavioral, metabolic, oxidative, and organ morphological changes in mice that are fed high-fat, high-sugar diet. Endocrinol Metab Immun Disord Drug Targets. 2020; 20:570-83. CrossRef PubMed
  38. Farias T, Paixao RID, Cruz MM, de Sa Ret et al. Melatonin supplementation attenuates the pro-inflammatory adipokines expression in visceral fat from obese mice induced by a high-fat diet. Cells. 2019; 8:1041. CrossRef PubMed PubMedCentral
  39. Rubio-Gonzalez A, Reiter RI, Luxon-Delgado B, Potes Y, et al. Pleiotropic role of melatonin in brain mitochondria of obese mice. Melatonin Res. 2020; 3(4):538-57. CrossRef
  40. Miron JC, Popescu F, Enacheson V, Cristea OM, et al. Combination of olanzapine pamoate with melatonin and metformin: Quantitative changes in raf adipose tissue. Cure Health Sci J. 2019; 45(4):372-82.
  41. Liu W, Zhang Y, Chen Q, Liu S, et al. Melatonin alleviates glucose and lipid metabolism disorders in Guinea pigs caused by different artificial light rhythms. J Diabet Res. 2020; 2020:4927403. CrossRef PubMed PubMedCentral
  42. Qingyun Guan, Zixu Wang, Jing Cao, et al. Mechanisms of melatonin in obesity: A review. Int J Mol Sci. 2022; 23(1): 218-41. CrossRef PubMed PubMedCentral
  43. Delpino FM, Figueira LM. Melatonin supplementation and anthropometric sndicatsons of Obsity. Asystematsc review and meta analysis. Nutrition, 2021; 91-92. CrossRef PubMed
  44. Karamitri A, Jockers R. Melatonin in type 2 diabetes mellitus and obesity. Nat Rev Endocrinol. 2019;15:105-25. CrossRef PubMed
  45. Palin LP, Polo TOB, Batista FRS, et al. Daily melatonin administration improves osseointegration in pinealectomized rats. J Appl Oral Sci. 2018; 26:e20170470. CrossRef PubMed PubMedCentral
  46. Amstrup AK, Sikjaer T, Pedersen SB, Heickendorff L, Mosekilde L, Rejnmark L. Reduced fat mass and increased lean mass in response to 1 year of melatonin treatment in postmenopausal women: A randomized placebo-controlled trial. Clin Endocrinol (Oxf). 2016; 84(3):342-47. CrossRef PubMed
  47. Munmun F, Witt Enderby PA. Melatonin effects on bone: Implications for use as a therapy for managing bone loss. J Pineal Res. 2021; 71(1):е12749. CrossRef PubMed
  48. Lu X, Yu S, Chen G, et al. Insight into the roles of melatonin in bone tissue and bone-related diseases (Review). Int J Mol Med. 2021; 47(5):82-101. CrossRef PubMed PubMedCentral
  49. Liu PI, Chang AC, Lai JL, Lin TH, et al. Melatonin interrupts osteoclast functioning and suppresses tumorsecreted RANKL expression: Implications for bone metastases. Oncogene. 2021; 40:1503-15. CrossRef PubMed
  50. Yang K, Qiu X, Cao L, Qiu S. The role of melatonin in the development of postmenopausal osteoporosis. Front Pharmacol. 2022; 13:975181. CrossRef PubMed PubMedCentral
  51. Gürler EB, Çilingir-Kaya ÖT, Peker Eyüboglu I, Ercan F, et al. Melatonin supports alendronate in preserving bone matrix and prevents gastric inflammation in ovariectomized rats. Cell Biochem Funct. 2019; 37 (2):102-12. CrossRef PubMed
  52. Yongchao Zhao, Guoxi Shao, Xingang Liu, and Zhengwei Li. Assessment of the therapeutic potential of melatonin for the treatment of osteoporosis through a narrative review of its signaling and preclinical and clinical studies. Front Pharmacol. 2022; 13: 866625. CrossRef PubMed PubMedCentral
  53. MacDonald IJ, Hsiao-Chi Tsai, An-Chen Chang, ChienChung Huang, et al. Melatonin inhibits osteoclastogenesis and osteolytic bone metastasis: implications for osteoporosis. Int J Mol Sci. 2021; 22(17): 9435-54. CrossRef PubMed PubMedCentral
  54. Kim HJ, Kim HJ, Bae MK, Kim YD. Suppression of osteoclastogenesis by melatonin: A melatonin receptorindependent action. Int J Mol Sci. 2017;18(6):1142-57. CrossRef PubMed PubMedCentral
  55. Han Y, Kim YM, Kim HS. Melatonin promotes osteoblast differentiation by regulating Osterix protein stability and expression. Sci Rep. 2017; 7(1):5716-25. CrossRef PubMed PubMedCentral
  56. Tian Y, Gong Z, Zhao R, Zhu Y. Melatonin inhibits RANKL-induced osteoclastogenesis through the miR882/Rev-erbα axis in Raw264.7 cells. Int J Mol Med. 2021; 47:633-42. CrossRef PubMed PubMedCentral
  57. Maria S, Samsonraj RM, Munmun F, Glas J, et al. Biological effects of melatonin on osteoblast/osteoclast cocultures, bone, and quality of life: Implications of a role for MT2 melatonin receptors, MEK1/2, and MEK5 in melatonin-mediated osteoblastogenesis. J Pineal Res. 2018; 64(3):10-34. CrossRef PubMed PubMedCentral
  58. Choi JH, Jang AR, Park MJ, Kim DI, Park JH. Melatonin inhibits osteoclastogenesis and bone loss in ovariectomized mice by regulating PRMT1-mediated signaling. Endocrinology. 2021; 162(6):bqab057. CrossRef PubMed
  59. Huang WC, Yang SF. Melatonin interrupts osteoclast functioning and suppresses tumor-secreted RANKL expression: Implications for bone metastases. Oncogene, 2021; 40:1503-15. CrossRef PubMed
  60. Thenmozhi A, Nagalakshmi K, Shila S, Rasappan P. Bone restoration in diabetic osteolysis and therapeutic targets. Diabet Case Rep. 2017,2(3): 1000132.
  61. Li T, Jiang S, Lu C, Yang W, et al. Melatonin: another avenue for treating osteoporosis? J Pineal Res. 2019; 66: e12548. CrossRef PubMed
  62. Frisher M, Gibbons N, Bashford J, Chapman S, Weich S. Melatonin, hypnotics and their association with fracture: A matched cohort study. Age Ageing. 2016; 45:801-6. Andersen LP, Gögenur I, Rosenberg J, Reiter RJ. The safety of melatonin in humans. Clin Drug Invest. 2016; 36:169-75. CrossRef PubMed
  63. Litovka IG, Berezovsky VY, Veselsky SP, Zhernoklev UO. Remodeling of bone tissue after administration of exogenous melatonin in different seasons. Physiol J. 2016; 62(3):48-53. [Ukrainian].
  64. Litovka I, Berezovskyi V, Veselskyi S, Yanko R, Zhernoklov U. Seasonal features of exogenous melatonin and dosed hypoxia influences on bone remodeling of young rats. IJIRR. 2017; 4(4):3986-91.
  65. Zhang WL, Meng HZ, Yang RF, Yang MW, et al. Melatonin suppresses autophagy in type 2 diabetic osteoporosis. Oncotarget. 2016; 7:52179-94. CrossRef PubMed PubMedCentral
  66. Renn TY, Huang YK, Feng SW, Wang HW, et al. Prophy lactic supplement with melatonin successfully suppresses the pathogenesis of periodontitis through normalizing RANKL/OPG ratio and depressing the TLR4/MyD88 signaling pathway. J Pineal Res. 2018; 64:е12464. CrossRef PubMed
  67. Zhang Y, Lin J, Zhou X, Chen X, et al. Melatonin prevents osteoarthritis-induced cartilage degradation via targeting MicroRNA-140. Oxid Med Cell Long. 2019; 2019:9705929. CrossRef PubMed PubMedCentral
  68. Guo JY, Li F, Wen YB, Cui HX, et al. Melatonin inhibits Sirt1-dependent NAMPT and NFAT5 signaling in chondrocytes to attenuate osteoarthritis. Oncotarget. 2017; 8:55967-83. CrossRef PubMed PubMedCentral
  69. Hong Y, Kim H, Lee S, Jin Y, et al. Role of melatonin combined with exercise as a switch-like regulator for circadian behavior in advanced osteoarthritic knee. Oncotarget. 2017; 8:97633-47. CrossRef PubMed PubMedCentral
  70. Hong Y, Kim H, Lee Y, Lee S, et al. Salutary effects of melatonin combined with treadmill exercise on cartilage damage. J Pineal Res. 2014; 57:53-66. CrossRef PubMed
  71. Sharan K, Lewis K, Furukawa T, Yadav VK. Regulation of bone mass through pineal-derived melatonin-MT2 receptor pathway. J Pineal Res. 2017; 63:e12423. CrossRef PubMed PubMedCentral
  72. Tresguerres IF, Tamimi F, Eimar H, Barralet JE, et al. Melatonin dietary supplement as an anti-aging therapy for age-related bone loss. Rejuvenat Res. 2014; 17:341-6. CrossRef PubMed
  73. Shino H, Hasuike A, Arai Y, Honda M, et al. Melatonin enhances vertical bone augmentation in rat calvaria secluded spaces. Med Oral Patol Oral Cir Bucal. 2016; 21:e122-6. CrossRef PubMed PubMedCentral
  74. Topkan E, Tufan H, Yavuz AA, Bacanli D, et al. Comparison of the protective effects of melatonin and amifostine on radiation-induced epiphyseal injury. Int J Radiat Biol. 2008; 84:796-802. CrossRef PubMed
  75. Zhang WL, Meng HZ, Yang RF, Yang MW, et al. Melatonin suppresses autophagy in type 2 diabetic osteoporosis. Oncotarget. 2016;7:52179-94. CrossRef PubMed PubMedCentral
  76. Tingting Bao, Liuting Zeng, Kailin Yang, Yuehua Li, et al. Can melatonin improve the osteopenia of perimenopausal and postmenopausal women? A Meta-Analysis Int. J Endocrinol. 2019; 2019: 5151678. CrossRef PubMed PubMedCentral
  77. Dong P, Gu X, Zhu G, Li M, et al. Melatonin induces osteoblastic differentiation of mesenchymal stem cells and promotes fracture healing in a rat model of femoral fracture via neuropeptide Y/neuropeptide Y receptor Y1 signaling. Pharmacology. 2018; 102:272-80. CrossRef PubMed
  78. Zhu G, Ma B, Dong P, Shang J, et al. Melatonin promotes osteoblastic differentiation and regulates PDGF/AKT signaling pathway. Cell Biol Int. 2020; 44:402-11. CrossRef PubMed
  79. Erdem M, Gulabi D, Asci M, Bostan B, et al. The effects of melatonin and caffeic acid phenethyl ester (CAPE) on fracture healing under ischemic conditions. Acta Orthop Traumatol Turc. 2014; 48:339-45. CrossRef PubMed
  80. Vina ER, Kwoh CK. Epidemiology of osteoarthritis: Literature update. Curr Opin Rheumatol. 2018; 30:160-67. CrossRef PubMed PubMedCentral
  81. Gao B, Gao W, Wu Z, Zhou T, et al. Melatonin rescued interleukin 1β-impaired chondrogenesis of human mesenchymal stem cells. Stem Cell Res Ther. 2018; 9:162-75. CrossRef PubMed PubMedCentral

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2025.