Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2024; 70(3): 79-87


P2X RECEPTORS AS A NOVEL PROMINENT PHARMACOLOGICAL TARGET FOR VARIOUS CNS DISORDERS

O. Iegorova, O. Maximyuk

    Bogomoletz Institute of Physiology, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz70.03.079


Abstract

Purinergic P2X receptors, particularly P2X7 and P2X4, are pivotal in brain functioning and pathology, affecting various central nervous system diseases. This review delves into P2X receptors’ roles in various pathologies, including ischemia, epilepsy, COVID-19, some neurodegenerative and psychiatric disorders. P2X7’s involvement in neuroinflammatory processes through the activation of the NLRP3 inflammasome highlights its significant role in corresponding pathologies and their treatment, as seen in studies using selective receptor antagonists like JNJ-55308942. Similarly, P2X4 receptor, which has the higher sensitivity to ATP than P2X7, plays critical roles in the inflammatory response poststroke and show therapeutic potential across a spectrum of neurological conditions. The emerging significance of P2X receptors in neurodegenerative diseases such as Alzheimer’s, Parkinson’s, Huntington’s, and Amyotrophic Lateral Sclerosis, showcasing their influence on disease progression and potential as therapeutic targets is also briefly discussed. In psychiatric disorders, including major depressive disorder and autism spectrum disorders, P2X receptors contribute to pathology through mechanisms involving inflammation and neuroimmune response modulation. In summary, the recent data underscores the importance of P2X receptors in CNS health and disease, advocating for further exploration to uncover novel therapeutic strategies.

Keywords: P2X receptors; CNS disorders; ATP; brain; neuroinflammation.

References

  1. Park JH, Kim YC. P2X7 receptor antagonists: a patent review (2010-2015). Expert Opin Ther Pat. 2017;27(3):257-67. CrossRef PubMed
  2. Pevarello P, Bovolenta S, Tarroni P, Za L, Severi E, Torino D, Vitalone R. P2X7 antagonists for CNS indications: recent patent disclosures. Pharm Pat Anal. 2017;6(2):61-76. CrossRef PubMed
  3. Andrejew R, Oliveira-Giacomelli A, Ribeiro DE, Glaser T, Arnaud-Sampaio VF, Lameu C, Ulrich H. The P2X7 Receptor: Central Hub of Brain Diseases. Front Mol Neurosci. 2020;13:124. CrossRef PubMed PubMedCentral
  4. Pelegrin P. P2X7 receptor and the NLRP3 inflammasome: Partners in crime. Biochem Pharmacol. 2021;187:114385. CrossRef PubMed
  5. Illes P, Muller CE, Jacobson KA, Grutter T, Nicke A, Fountain SJ, Kennedy C, Schmalzing G, Jarvis MF, Stojilkovic SS, King BF, Di Virgilio F. Update of P2X receptor properties and their pharmacology: IUPHAR Review 30. Br J Pharmacol. 2021;178(3):489-514. CrossRef PubMed PubMedCentral
  6. Falzoni S, Donvito G, Di Virgilio F. Detecting adenosine triphosphate in the pericellular space. Interface Focus. 7. He Y, Taylor N, Fourgeaud L, Bhattacharya A. The role of microglial P2X7: modulation of cell death and cytokine release. J Neuroinflammat. 2017;14(1):135. CrossRef PubMed PubMedCentral
  7. Bhattacharya A, Lord B, Grigoleit JS, He Y, Fraser I, Campbell SN, Taylor N, Aluisio L, O'Connor JC, Papp M, Chrovian C, Carruthers N, Lovenberg TW, Letavic MA. Neuropsychopharmacology of JNJ-55308942: evaluation of a clinical candidate targeting P2X7 ion channels in animal models of neuroinflammation and anhedonia. Neuropsychopharmacology. 2018;43(13):2586-96. CrossRef PubMed PubMedCentral
  8. Cheng RD, Ren JJ, Zhang YY, Ye XM. P2X4 receptors expressed on microglial cells in post-ischemic inflammation of brain ischemic injury. Neurochem Int. 2014;67:9-13. CrossRef PubMed
  9. Verma R, Cronin CG, Hudobenko J, Venna VR, McCullough LD, Liang BT. Deletion of the P2X4 receptor is neuroprotective acutely, but induces a depressive phenotype during recovery from ischemic stroke. Brain Behav Immun. 2017;66:302-12. CrossRef PubMed PubMedCentral
  10. Wixey JA, Reinebrant HE, Carty ML, Buller KM. Delayed P2X4R expression after hypoxia-ischemia is associated with microglia in the immature rat brain. J Neuroimmunol. 2009;212(1-2):35-43. CrossRef PubMed
  11. Ozaki T, Muramatsu R, Sasai M, Yamamoto M, Kubota Y, Fujinaka T, Yoshimine T, Yamashita T. The P2X4 receptor is required for neuroprotection via ischemic preconditioning. Sci Rep. 2016;6:25893. CrossRef PubMed PubMedCentral
  12. Xiao J, Huang Y, Li X, Li L, Yang T, Huang L, Yang L, Jiang H, Li H, Li F. TNP-ATP is beneficial for treatment of neonatal hypoxia-induced hypomyelination and cognitive decline. Neurosci Bull. 2016;32(1):99-107. CrossRef PubMed PubMedCentral
  13. Beamer E, Conte G, Engel T. ATP release during seizures - A critical evaluation of the evidence. Brain Res Bull. 2019;151:65-73. CrossRef PubMed
  14. Ulmann L, Levavasseur F, Avignone E, Peyroutou R, Hirbec H, Audinat E, Rassendren F. Involvement of P2X4 receptors in hippocampal microglial activation after status epilepticus. Glia. 2013;61(8):1306-19. CrossRef PubMed
  15. Engel T, Gomez-Villafuertes R, Tanaka K, Mesuret G, Sanz-Rodriguez A, Garcia-Huerta P, Miras-Portugal MT, Henshall DC, Diaz-Hernandez M. Seizure suppression and neuroprotection by targeting the purinergic P2X7 receptor during status epilepticus in mice. FASEB J. 2012;26(4):1616-28. CrossRef PubMed
  16. Huang C, Chi XS, Li R, Hu X, Xu HX, Li JM, Zhou D. Inhibition of P2X7 receptor ameliorates nuclear factor-kappa b mediated neuroinflammation induced by status epilepticus in rat hippocampus. J Mol Neurosci. 2017;63(2):173-84. CrossRef PubMed
  17. Rodriguez-Alvarez N, Jimenez-Mateos EM, Engel T, Quinlan S, Reschke CR, Conroy RM, Bhattacharya A, Boylan GB, Henshall DC. Effects of P2X7 receptor antagonists on hypoxia-induced neonatal seizures in mice. Neuropharmacology. 2017;116:351-63. CrossRef PubMed
  18. Edwards C, Klekot O, Halugan L, Korchev Y. Follow Your Nose: A Key Clue to Understanding and Treating COVID-19. Front Endocrinol (Lausanne). 2021; 12:747744. CrossRef PubMed
  19. Maliha ST, Fatemi R, Araf Y. COVID-19 and the brain: understanding the pathogenesis and consequences of neurological damage. Mol Biol Rep. 2024;51(1):318. CrossRef PubMed
  20. Lukiw WJ, Pogue A, Hill JM. SARS-CoV-2 Infectivity and Neurological Targets in the Brain. Cell Mol Neurobiol. 2022;42(1):217-24. CrossRef PubMed PubMedCentral
  21. Wan D, Du T, Hong W, Chen L, Que H, Lu S, Peng X. Neurological complications and infection mechanism of SARS-COV-2. Signal Transduct Target Ther. 2021;6(1):406. CrossRef PubMed PubMedCentral
  22. Heppner FL, Ransohoff RM, Becher B. Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci. 2015;16(6):358-72. CrossRef PubMed
  23. McGeer PL, Rogers J, McGeer EG. Inflammation, antiinflammatory agents, and Alzheimer's disease: The last 22 years. J Alzheimer Dis. 2016;54(3):853-7. CrossRef PubMed
  24. Tyshchenko YN, Lukyanetz EA. The role of betaamyloid in norm and at alzheimer's disease. Fiziol Zh. 2020;66(6):88-96. CrossRef
  25. Saez-Orellana F, Fuentes-Fuentes MC, Godoy PA, SilvaGrecchi T, Panes JD, Guzman L, Yevenes GE, Gavilan J, Egan TM, Aguayo LG, Fuentealba J. P2X receptor overexpression induced by soluble oligomers of amyloid beta peptide potentiates synaptic failure and neuronal dyshomeostasis in cellular models of Alzheimer's disease. Neuropharmacology. 2018;128:366-78. CrossRef PubMed PubMedCentral
  26. Sanz JM, Chiozzi P, Ferrari D, Colaianna M, Idzko M, Falzoni S, Fellin R, Trabace L, Di Virgilio F. Activation of microglia by amyloid beta requires P2X7 receptor expression. J Immunol. 2009;182(7):4378-85. CrossRef PubMed
  27. Lee HG, Won SM, Gwag BJ, Lee YB. Microglial P2X(7) receptor expression is accompanied by neuronal damage in the cerebral cortex of the APPswe/PS1dE9 mouse model of Alzheimer's disease. Exp Mol Med. 2011;43(1):7-14. CrossRef PubMed PubMedCentral
  28. Diaz-Hernandez JI, Gomez-Villafuertes R, Leon-Otegui M, Hontecillas-Prieto L, Del Puerto A, Trejo JL, Lucas JJ, Garrido JJ, Gualix J, Miras-Portugal MT, Diaz-Hernandez M. In vivo P2X7 inhibition reduces amyloid plaques in Alzheimer's disease through GSK3beta and secretases. Neurobiol Aging. 2012;33(8):1816-28. CrossRef PubMed
  29. Delarasse C, Auger R, Gonnord P, Fontaine B, Kanellopoulos JM. The purinergic receptor P2X7 triggers alpha-secretase-dependent processing of the amyloid precursor protein. J Biol Chem. 2011;286(4):2596-606. CrossRef PubMed PubMedCentral
  30. Chen X, Hu J, Jiang L, Xu S, Zheng B, Wang C, Zhang J, Wei X, Chang L, Wang Q. Brilliant Blue G improves cognition in an animal model of Alzheimer's disease and inhibits amyloid-beta-induced loss of filopodia and dendrite spines in hippocampal neurons. Neuroscience. 2014;279:94-101. CrossRef PubMed
  31. Varma R, Chai Y, Troncoso J, Gu J, Xing H, Stojilkovic SS, Mattson MP, Haughey NJ. Amyloid-beta induces a caspase-mediated cleavage of P2X4 to promote purinotoxicity. Neuromol Med. 2009;11(2):63-75. CrossRef PubMed PubMedCentral
  32. Godoy PA, Mennickent D, Cuchillo-Ibanez I, RamirezMolina O, Silva-Grecchi T, Panes-Fernandez J, Castro P, Saez-Valero J, Fuentealba J. Increased P2x2 receptors induced by amyloid-beta peptide participates in the neurotoxicity in alzheimer's disease. Biomed Pharmacother. 2021;142:111968. CrossRef PubMed
  33. Carmo M, Goncalves FQ, Canas PM, Oses JP, Fernandes FD, Duarte FV, Palmeira CM, Tome AR, Agostinho P, Andrade GM, Cunha RA. Enhanced ATP release and CD73-mediated adenosine formation sustain adenosine A(2A) receptor over-activation in a rat model of Parkinson's disease. Br J Pharmacol. 2019;176(18):3666-80. CrossRef PubMed PubMedCentral
  34. Ferrazoli EG, de Souza HD, Nascimento IC, OliveiraGiacomelli A, Schwindt TT, Britto LR, Ulrich H. Brilliant Blue G, but not fenofibrate, treatment reverts hemiparkinsonian behavior and restores dopamine levels in an animal model of Parkinson's disease. Cell Transplant. 2017;26(4):669-77. CrossRef PubMed PubMedCentral
  35. Oliveira-Giacomelli A, C MA, de Souza HDN, CorreaVelloso J, de Jesus Santos AP, Baranova J, Ulrich H. P2Y6 and P2X7 receptor antagonism exerts neuroprotective/ neuroregenerative effects in an animal model of Parkinson's disease. Front Cell Neurosci. 2019;13:476. CrossRef PubMed PubMedCentral
  36. Ma J, Gao J, Niu M, Zhang X, Wang J, Xie A. P2X4R overexpression upregulates interleukin-6 and exacerbates 6-OHDA-induced dopaminergic degeneration in a rat model of PD. Front Aging Neurosci. 2020;12:580068. CrossRef PubMed PubMedCentral
  37. Zhang X, Wang J, Gao JZ, Zhang XN, Dou KX, Shi WD, Xie AM. P2X4 receptor participates in autophagy regulation in Parkinson's disease. Neural Regen Res. 2021;16(12):2505-11. CrossRef PubMed PubMedCentral
  38. Gan M, Moussaud S, Jiang P, McLean PJ. Extracellular ATP induces intracellular alpha-synuclein accumulation via P2X1 receptor-mediated lysosomal dysfunction. Neurobiol Aging. 2015;36(2):1209-20. CrossRef PubMed PubMedCentral
  39. Navarro G, Borroto-Escuela DO, Fuxe K, Franco R. Purinergic signaling in Parkinson's disease. Relevance for treatment. Neuropharmacology. 2016;104:161-8. CrossRef PubMed
  40. Diaz-Hernandez M, Diez-Zaera M, Sanchez-Nogueiro J, Gomez-Villafuertes R, Canals JM, Alberch J, MirasPortugal MT, Lucas JJ. Altered P2X7-receptor level and function in mouse models of Huntington's disease and therapeutic efficacy of antagonist administration. FASEB J. 2009;23(6):1893-906. CrossRef PubMed
  41. Olla I, Santos-Galindo M, Elorza A, Lucas JJ. P2X7 Receptor Upregulation in Huntington's Disease Brains. Front Mol Neurosci. 2020;13:567430. CrossRef PubMed PubMedCentral
  42. Yiangou Y, Facer P, Durrenberger P, Chessell IP, Naylor A, Bountra C, Banati RR, Anand P. COX-2, CB2 and P2X7- immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord. BMC Neurol. 2006;6:12. CrossRef PubMed PubMedCentral
  43. D'Ambrosi N, Finocchi P, Apolloni S, Cozzolino M, Ferri A, Padovano V, Pietrini G, Carri MT, Volonte C. The proinflammatory action of microglial P2 receptors is enhanced in SOD1 models for amyotrophic lateral sclerosis. J Immunol. 2009;183(7):4648-56. CrossRef PubMed
  44. Casanovas A, Hernandez S, Tarabal O, Rossello J, Esquerda JE. Strong P2X4 purinergic receptorlike immunoreactivity is selectively associated with degenerating neurons in transgenic rodent models of amyotrophic lateral sclerosis. J Comp Neurol. 2008;506(1):75-92. CrossRef PubMed
  45. Andries M, Van Damme P, Robberecht W, Van Den Bosch L. Ivermectin inhibits AMPA receptor-mediated excitotoxicity in cultured motor neurons and extends the life span of a transgenic mouse model of amyotrophic lateral sclerosis. Neurobiol Dis. 2007;25(1):8-16. CrossRef PubMed
  46. Volonte C, Amadio S, Liguori F, Fabbrizio P. Duality of p2x7 receptor in amyotrophic lateral sclerosis. Front Pharmacol. 2020;11:1148. CrossRef PubMed PubMedCentral
  47. Apolloni S, Amadio S, Montilli C, Volonte C, D'Ambrosi N. Ablation of P2X7 receptor exacerbates gliosis and motoneuron death in the SOD1-G93A mouse model of amyotrophic lateral sclerosis. Hum Mol Genet. 2013;22(20):4102-16. CrossRef PubMed
  48. Apolloni S, Amadio S, Parisi C, Matteucci A, Potenza RL, Armida M, Popoli P, D'Ambrosi N, Volonte C. Spinal cord pathology is ameliorated by P2X7 antagonism in a SOD1-mutant mouse model of amyotrophic lateral sclerosis. Dis Model Mech. 2014;7(9):1101-9. CrossRef PubMed PubMedCentral
  49. Fabbrizio P, Amadio S, Apolloni S, Volonte C. P2X7 receptor activation modulates autophagy in SOD1-G93A mouse microglia. Front Cell Neurosci. 2017;11:249. CrossRef PubMed PubMedCentral
  50. Vazquez-Villoldo N, Domercq M, Martin A, Llop J, Gomez-Vallejo V, Matute C. P2X4 receptors control the fate and survival of activated microglia. Glia. 2014;62(2):171-84. CrossRef PubMed
  51. Amadio S, Parisi C, Piras E, Fabbrizio P, Apolloni S, Montilli C, Luchetti S, Ruggieri S, Gasperini C, LaghiPasini F, Battistini L, Volonte C. Modulation of P2X7 Receptor during inflammation in multiple sclerosis. Front Immunol. 2017;8:1529. CrossRef PubMed PubMedCentral
  52. Gu BJ, Field J, Dutertre S, Ou A, Kilpatrick TJ, Lechner-Scott J, et al. A rare P2X7 variant Arg307Gln with absent pore formation function protects against neuroinflammation in multiple sclerosis. Hum Mol Genet. 2015;24(19):5644-54. CrossRef PubMed
  53. Sadovnick AD, Gu BJ, Traboulsee AL, Bernales CQ, Encarnacion M, Yee IM, Criscuoli MG, Huang X, Ou A, Milligan CJ, Petrou S, Wiley JS, Vilarino-Guell C. Purinergic receptors P2RX4 and P2RX7 in familial multiple sclerosis. Hum Mutat. 2017;38(6):736-44. CrossRef PubMed PubMedCentral
  54. Zabala A, Vazquez-Villoldo N, Rissiek B, Gejo J, Martin A, Palomino A, Perez-Samartin A, Pulagam KR, Lukowiak M, Capetillo-Zarate E, Llop J, Magnus T, Koch-Nolte F, Rassendren F, Matute C, Domercq M. P2X4 receptor controls microglia activation and favors remyelination in autoimmune encephalitis. EMBO Mol Med. 2018;10(8):e8743. CrossRef PubMed PubMedCentral
  55. Lang PA, Merkler D, Funkner P, Shaabani N, Meryk A, Krings C, Barthuber C, Recher M, Bruck W, Haussinger D, Ohashi PS, Lang KS. Oxidized ATP inhibits T-cell-mediated autoimmunity. Eur J Immunol. 2010;40(9):2401-8. CrossRef PubMed
  56. Cheffer A, Castillo ARG, Correa-Velloso J, Goncalves MCB, Naaldijk Y, Nascimento IC, Burnstock G, Ulrich H. Purinergic system in psychiatric diseases. Mol Psychiatr. 2018;23(1):94-106. CrossRef PubMed
  57. Krugel U. Purinergic receptors in psychiatric disorders. Neuropharmacology. 2016;104:212-25. CrossRef PubMed
  58. Montilla A, Mata GP, Matute C, Domercq M. Contribution of P2X4 Receptors to CNS Function and Pathophysiology. Int J Mol Sci. 2020;21(15):5562. CrossRef PubMed PubMedCentral
  59. Gubert C, Fries GR, Pfaffenseller B, Ferrari P, CoutinhoSilva R, Morrone FB, Kapczinski F, Battastini AMO. Role of P2X7 receptor in an animal model of mania induced by D-amphetamine. Mol Neurobiol. 2016;53(1):611-20. CrossRef PubMed
  60. Stokes L, Spencer SJ, Jenkins TA. Understanding the role of P2X7 in affective disorders-are glial cells the major players? Front Cell Neurosci. 2015;9:258. CrossRef PubMed PubMedCentral
  61. Cao X, Li LP, Wang Q, Wu Q, Hu HH, Zhang M, Fang YY, Zhang J, Li SJ, Xiong WC, Yan HC, Gao YB, Liu JH, Li XW, Sun LR, Zeng YN, Zhu XH, Gao TM. Astrocytederived ATP modulates depressive-like behaviors. Nat Med. 2013;19(6):773-7. CrossRef PubMed
  62. Basso AM, Bratcher NA, Harris RR, Jarvis MF, Decker MW, Rueter LE. Behavioral profile of P2X7 receptor knockout mice in animal models of depression and anxiety: relevance for neuropsychiatric disorders. Behav Brain Res. 2009;198(1):83-90. CrossRef PubMed
  63. Hempel C, Norenberg W, Sobottka H, Urban N, Nicke A, Fischer W, Schaefer M. The phenothiazine-class antipsychotic drugs prochlorperazine and trifluoperazine are potent allosteric modulators of the human P2X7 receptor. Neuropharmacology. 2013;75:365-79. CrossRef PubMed
  64. Soderlund J, Schroder J, Nordin C, Samuelsson M, Walther-Jallow L, Karlsson H, Erhardt S, Engberg G. Activation of brain interleukin-1beta in schizophrenia. Mol Psychiatr. 2009;14(12):1069-71. CrossRef PubMed PubMedCentral
  65. Wyatt LR, Godar SC, Khoja S, Jakowec MW, Alkana RL, Bortolato M, Davies DL. Sociocommunicative and sensorimotor impairments in male P2X4-deficient mice. Neuropsychopharmacology. 2013;38(10):1993-2002. CrossRef PubMed PubMedCentral
  66. Naviaux RK, Zolkipli Z, Wang L, Nakayama T, Naviaux JC, Le TP, Schuchbauer MA, Rogac M, Tang Q, Dugan LL, Powell SB. Antipurinergic therapy corrects the autism-like features in the poly(IC) mouse model. PLoS One. 2013;8(3):e57380. CrossRef PubMed PubMedCentral

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2025.