Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2024; 70(2): 67-74


L.M. Samokhina1, V.V. Lomako2, Yu.S. Rudyk1

  1. L.T. Malaya named National Institute of Therapy of the National Academy of Sciences of Ukraine, state institute, Kharkiv, Ukraine
  2. Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine


Mesenchymal stem cells from cord blood (CB) are actively used for the correction of cardiovascular disorders, the important role in the formation of which belongs to chymase and tonin (or kallikrein II), capable of forming angiotensin II in humans. In elderly people, the action of tonin leads to an increase in blood pressure and heart rate against the background of chymase activity decrease. The aim of our work was to investigate the activity of chymase and tonin under allogenic CB injection to old rats with stress-induced hypertension (SIH). The SIH was modeled using the “non-avoidance” test, conducting one session daily for three weeks until stable hypertension was achieved. Allogeneic cryopreserved CB, which was obtained from 17-19-day-old rat embryos, was injected intraperitoneally once in 0.5 ml (3.5∙107 cells/ml). 4 days after the injection, the activity of chymase and tonin was determined by enzymatic methods in blood serum, nuclear-free homogenates of brain cortex, lung, heart, liver, and kidney tissues. The SIH development led to a decrease in the chymase activity, more significantly in blood serum, brain cortex, kidneys and the tonin activity in the brain cortex, heart and kidneys. After the CB injection to rats with SIH, the chymase and tonin activities increased in all samples except the liver. Significant changes were noted only for tonin in the brain cortex and kidneys. At the same time, normalization of this indicator was not observed in the brain cortex, which indicates the need to increase the dose of the cellular drug or the number of injections and prolong the observation period to achieve a full renewing effect. Thus, allogeneic umbilical CB injection to 24-month-old rats with SIH leads to restoration of chymase and tonin activity in most of the studied tissues.

Keywords: chymase; tonin; stress-induced hypertension; cord blood.


  1. Limone P, Toto GA, Messina G. Impact of the COVID-19 pandemic and the Russia-Ukraine war on stress and anxiety in students: A systematic review. Front Psychiatr. 2022;25;13:1081013. CrossRef PubMed PubMedCentral
  2. Vadzyuk SN, Sas ВВ, Ratynska OM, Tkachuk SS. Features of psycho-emotional state in people with different stress resistance. Fiziol Zh. 2022;68(2):92-7. CrossRef
  3. Sara JDS, Toya T, Ahmad A, Clark MM, Gilliam WP, Lerman LO, et al. Mentalstress and its effects on vascular health. Mayo Clin Proc. 2022;97(5):951-90. CrossRef PubMed PubMedCentral
  4. Silva AA, Perilhão MS, Portes LA, Serra AJ, Tucci PJF, Leopoldo AS, et al. Physical exercise attenuates stressinduced hypertension in rats but not the impairments on the myocardial mechanics. J Hypertens. 2022;40(3):528-35. CrossRef PubMed
  5. Samokhina LM, Rudyk YuS. Stress and hypertension in war and COVID-19 conditions. Fiziol Zh. 2023;69(5):100-13. CrossRef
  6. Gideon A, Sauter C, Ehlert U, von Känel R, Wirtz PH. Aldosterone hyperreactivity to acute psychosocial stress induction in men with essential hypertension. Horm Behav. 2021;134:105018. CrossRef PubMed
  7. Bal NB, Han S, Kiremitci S, Uludag MO, Demirel-Yilmaz E. Reversal of deleterious effect of hypertension on the liver by inhibition of endoplasmic reticulum stress. Mol Biol Rep. 2020;47(3):2243-52. CrossRef PubMed
  8. Mahmood S, Shah KU, Khan TM, Nawaz S, Rashid H, Baqar SWA, et al. Non-pharmacological management of hypertension: in the light of current research. Ir J Med Sci. 2019;188(2):437-52. CrossRef PubMed
  9. Reyes S, Cheng CP, Roberts DJ, Yamashita T, Ahmad S, VonCannon JL, et al. Angiotensin-(1-12)/chymase axis modulates cardiomyocyte L-type calcium currents in rats expressing human angiotensinogen. Int J Cardiol. 2019;297:104-10. CrossRef PubMed PubMedCentral
  10. Ferrario CM, Groban L, Wang H, Cheng CP, VonCannon JL, Wright KN, et al. The Angiotensin-(1-12)/Chymase axis as an alternate component of the tissue renin angiotensin system. Mol Cell Endocrinol. 2021;529:111119. CrossRef PubMed PubMedCentral
  11. Roszkowska-Chojecka MM, Baranowska I, Gawrys O, Sadowski J, Walkowska A, Kalisz M, et al. Role of chymase in blood pressure control, plasma and tissue angiotensin II, renal Haemodynamics, and excretion in spontaneously hypertensive rats. Clin Exp Hypertens. 2021;43(5):392-401. CrossRef PubMed
  12. Dell'Italia LJ, Collawn JF, Ferrario CM. Multifunctional role of chymase in acute and chronic tissue injury and remodeling. Circ Res. 2018;122(2):319-36. CrossRef PubMed PubMedCentral
  13. Samokhinа LM, Lomako VV. Activity of chymase, tonin and calpains in tissues of males and females rats of different ages. Advances Gerontol. 2021;11(3):247-53. CrossRef
  14. Carter A, Donovan R. Angiotensin II Receptor Blockers (ARBs). Pharm.D. 2022; Jul: 8.
  15. Roura S, Pujal JM, Gálvez-Montón C, Bayes-Genis A. Impact of umbilical cord blood-derived mesenchymal stem cells on cardiovascular research. Biomed Res Int. 2015;2015:975302. CrossRef PubMed PubMedCentral
  16. Orlando N, Pellegrino C, Valentini CG, Bianchi M, Barbagallo O, Sparnacci S, et al. Umbilical cord blood: Current uses for transfusion and regenerative medicine. Transfus Apher Sci. 2020;59(5):102952. CrossRef PubMed
  17. Qiu H, Qian T, Wu T, Wang X, Zhu C, Chen C, et al. Umbilical cord blood cells for the treatment of preterm white matter injury: Potential effects and treatment options. J Neurosci Res. 2021;99(3):778-92. CrossRef PubMed
  18. Germenis AE, Karanikas V. Cord blood as a source of non-senescent lymphocytes for tumor immunotherapy. J Reprod Immunol. 2010;85(1):47-50. CrossRef PubMed
  19. Körbling M, Robinson S, Estrov Z, Champlin R, Shpall E. Umbilical cord blood-derived cells for tissue repair. Cytotherapy. 2005;7(3):258-61. CrossRef PubMed
  20. Roura S, Gálvez-Montón C, Bayes-Genis A. Umbilical cord blood-derived mesenchymal stem cells: new therapeutic weapons for idiopathic dilated cardiomyopathy? Int J Cardiol. 2014;177(3):809-18. CrossRef PubMed
  21. Babiichuk LO, Hryschenko VI, Hurina TM, Riazantsev VV, Zubova OL, Zubov PM. Method for cryoconservation of whole cord blood. Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine patent UA 80062. 2007 Аug 10.
  22. Tsutsaieva AO, Hryschenko VI. Zheltiakova IО, Brovko OV, Chernousova SS, Peschanskyi MI. Method for cryoprreserving nucleated cells in composition of whole cord blood. Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, patent UA 81368. 2007 Dec 25.
  23. Samokhina LM. Stress, hypertension and adaptation. LAP LAMBERT Acad Publ. Deutschland. 2015.
  24. Makashova OE. The influence of antioxidants on the state of nucleared cells of cord blood during cryopreservation with the cryoprotector dimethylsulphoxide [dissertation]. Kharkiv (UA): Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine. 2018.
  25. Park DH, Borlongan CV, Willing AE, Eve DJ, Cruz LE, Sanberg CD, et al. Human umbilical cord blood cell grafts for brain ischemia. Cell Transplant. 2009;18(9):985-98. CrossRef PubMed
  26. Samokhina LM, Babiychuk VG, Lomako VV, Mamontov VV, Poznahareva IA, Samokhin AA, et al. The proteinaseproteinase inhibitor system in old rats with stimulated hypertension under the cord blood influence. Ukr Biochem J. 2002;74(2):95-9.
  27. Maung KK, Horwitz ME. Current and future perspectives on allogeneic transplantation using ex vivo expansion or manipulation of umbilical cord blood cells. Int J Hematol. 2019;110(1):50-8. CrossRef PubMed
  28. Herranz AS, Gonzalo-Gobernado R, Reimers D, Asensio MJ, Rodríguez-Serrano M, Bazán E. Applications of human umbilical cord blood cells in central nervous system regeneration. Curr Stem Cell Res Ther. 2010;5(1):17-22. CrossRef PubMed
  29. Lomako VV, Shilo OV, Samokhina LM, Lutsenko DG. Pituitary-thyroid system of rats of different ages under desynchronization, cryostimulation and cord blood administration. Probl Cryobiol Cryomed 2022;32(3):196-205. [Ukrainian]. CrossRef
  30. Landucci E, Laurino A, Cinci L, Gencarelli M, Raimondi L. Thyroid hormone, thyroid hormone metabolites and mast cells: A Less explored Issue. Front Cell Neurosci. 2019;13:79. CrossRef PubMed PubMedCentral
  31. Gu Y, Zheng L, Zhang Q, Liu L, Meng G, Yao Z, et al. Relationship between thyroid function and elevated blood pressure in euthyroid adults. J Clin Hypertens (Greenwich). 2018;20(10):1541-9. CrossRef PubMed PubMedCentral
  32. Liu S, Suzuki Y, Takemasa E, Watanabe R, Mogi M. Mast cells promote viral entry of SARS-CoV-2 via formation of chymase/spike protein complex. Eur J Pharmacol. 2022;930:175169. CrossRef PubMed PubMedCentral
  33. Abassi Z, Skorecki K, Hamo-Giladi DB, Kruzel-Davila E, Heyman SN. Kinins and chymase: the forgotten components of the renin-angiotensin system and their implications in COVID-19 disease. Am J Physiol Lung Cell Mol Physiol. 2021;320(3):L422-9. CrossRef PubMed PubMedCentral
  34. Xue E, Milano F. Are we underutilizing bone marrow and cord blood? Review of their role and potential in the era of cellular therapies. 2020;9:F1000. CrossRef PubMed PubMedCentral

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.