Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2024; 70(2): 35-42


ROLE OF POTASSIUM CHANNEL TREK-1 IN MECHANOSENSITIVITY OF SMOOTH MUSCLE CELLS FROM RAT DETRUSOR

S.I. Yeliashov, B.R. Sharopov, Ya.M. Shuba

    Bogomoletz Institute of Physiology National Academy of Sciences of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz70.02.035


Abstract

Currently, TREK-1 is considered to be the main mechanosensitive channel in detrusor smooth muscle (DSM) cells. The aim of our study was to detect the functioning of the K+-conducting mechanosensitive TREK-1 channel in rat DSM cells using the patch-clamp technique in response to hydrodynamic stimulation (shear stress) and to determine the effects of a TREK-1 agonist – arachidonic acid (AA) and an antagonist – L-methionine. Mechanical stimulation of DSM cells using hydrodynamic stress led to the appearance of a membrane current with signs of pronounced outward rectification at positive membrane potentials, which is typical of TREK-1 activation. The application of AA (50 mcmol/l) activated a current with similar characteristics of the outward rectification to the shear stress-activated one. L-methionine (10 mcmol/l) almost completely prevented the generation of an outwardly rectifying current in response to shear stress stimulation. DSM cells also retained the ability to generate a mechanoactivated current with a more pronounced inward component when extracellular and intracellular K+ were replaced by Cs+. It was concluded that the dominant mechanoactivated current in rat DSM cells is carried by K+-selective TREK-1 channels, but a small portion of this current can also be carried by other nonselective mechanosensitive cation channels.

Keywords: mechanosensation; urinary bladder; smooth muscle cells; shear stress; TREK-1.

References

  1. Volkers L, Mechioukhi Y, Coste B. Piezo channels: from structure to function. Pflüg Arch. 2015 Jan;467(1):95-9. CrossRef PubMed
  2. Araki I. TRP channels in urinary bladder mechanosensation. Adv Exp Med Biol. 2011;704:861-79. CrossRef PubMed
  3. Birder L, Andersson KE. Urothelial signaling. Physiol Rev. 2013 Apr;93(2):653-80. CrossRef PubMed PubMedCentral
  4. Deruyver Y, Weyne E, Dewulf K, Rietjens R, Pinto S, Van Ranst N, et al. W. Intravesical activation of the cation channel TRPV4 improves bladder function in a rat model for detrusor underactivity. Eur Urol. 2018 Sep;74(3):336-45. CrossRef PubMed
  5. Merrill L, Gonzalez EJ, Girard BM, Vizzard MA. Receptors, channels, and signalling in the urothelial sensory system in the bladder. Nat Rev Urol. 2016 Mar 1;13(4):193-204. CrossRef PubMed PubMedCentral
  6. Zagorodnyuk VP, Gibbins IL, Costa M, Brookes SJH, Gregory SJ. Properties of the major classes of mechanoreceptors in the guinea pig bladder. J Physiol. 2007 Nov 14;585(1):147-63. CrossRef PubMed PubMedCentral
  7. Dalghi MG, Ruiz WG, Clayton DR, Montalbetti N, Daugherty SL, Beckel JM, Carattino MD, Apodaca G. Functional roles for PIEZO1 and PIEZO2 in urothelial mechanotransduction and lower urinary tract interoception. JCI Insight. 2021 Oct 8;6(19):e152984. CrossRef PubMed PubMedCentral
  8. Vanneste M, Segal A, Voets T, Everaerts W. Transient receptor potential channels in sensory mechanisms of the lower urinary tract. Nat Rev Urol. 2021 Mar 1;18(3):139-59. CrossRef PubMed
  9. Dalghi MG, Ruiz WG, Clayton DR, Montalbetti N, Daugherty SL, Beckel JM, Carattino MD, Apodaca G. Expression and distribution of PIEZO1 in the mouse urinary tract. Am J Physiol Renal Physiol. 2019 Aug 1;317(2):F303-21. CrossRef PubMed PubMedCentral
  10. Bechard E, Bride J, Le Guennec JY, Brette F, Demion M. TREK-1 in the heart: Potential physiological and pathophysiological roles. Front Physiol. 2022 Dec 22;13. CrossRef PubMed PubMedCentral
  11. Pineda RH, Nedumaran B, Hypolite J, Pan XQ, Wilson S, Meacham RB, Malykhina AP. Altered expression and modulation of the two-pore-domain (K2P) mechanogated potassium channel TREK-1 in overactive human detrusor. Am J Physiol Renal Physiol. 2017 Aug 1;313(2):F535-46. CrossRef PubMed PubMedCentral
  12. Pineda RH, Hypolite J, Lee S, Carrasco A Jr, Iguchi N, Meacham RB, Malykhina AP. Altered detrusor contractility and voiding patterns in mice lacking the mechanosensitive TREK-1 channel. BMC Urol. 2019 May 21;19(1):40. CrossRef PubMed PubMedCentral
  13. Goonetilleke L, Quayle J. TREK-1 K+ channels in the cardiovascular system: their significance and potential as a therapeutic target. Cardiovascul Ther. 2010 Oct 14;30(1):e23-9. CrossRef PubMed
  14. Qi L, Pan X, Chang S, S. Bruce Malkowicz, Guzzo TJ, Malykhina AP. Response of the human detrusor to stretch is regulated by TREK-1, a two-pore-domain (K2P) mechano-gated potassium channel. J Physiol. 2014 May 21;592(14):3013-30. CrossRef PubMed PubMedCentral
  15. Pineda RH, Hypolite J, Lee S, Carrasco A Jr, Iguchi N, Meacham RB, Malykhina AP. Altered detrusor contractility and voiding patterns in mice lacking the mechanosensitive TREK-1 channel. BMC Urol. 2019 May 21;19(1):40. CrossRef PubMed PubMedCentral
  16. Sharopov BR, Shuba YM. Activation of TRPV1 by nitric oxide donors requires co-application of sulfhydrylcontaining reagent. Fiziol Zh. 2017;63(2):3-9. [Ukrainian]. CrossRef
  17. Djillani A, Mazella J, Heurteaux C, Borsotto M. role of trek-1 in health and disease, focus on the central nervous system. Front Pharmacol. 2019 Apr 11;10:379. CrossRef PubMed PubMedCentral
  18. Patel AJ, Honoré E, Maingret F, Lesage F, Fink M, Duprat F, Lazdunski M. A mammalian two pore domain mechano-gated S-like K+ channel. EMBO J. 1998 Aug 3;17(15):4283-90. CrossRef PubMed PubMedCentral
  19. Petkov GV. Central role of the BK channel in urinary bladder smooth muscle physiology and pathophysiology. Am J Physiol Regul Integr Comp Physiol. 2014 Sep 15;307(6):R571-84. CrossRef PubMed PubMedCentral
  20. Beča KIK, Girard BM, Heppner TJ, Hennig GW, Herrera GM, Nelson MT, Vizzard MA. The role of PIEZO1 in urinary bladder function and dysfunction in a rodent model of cyclophosphamide-induced cystitis. Front Pain Res (Lausanne). 2021 Oct 12;2:748385. CrossRef PubMed PubMedCentral
  21. Miyamoto T, Mochizuki T, Nakagomi H, Kira S, Watanabe M, Takayama Y, Suzuki Y, Koizumi S, Takeda M, Tominaga M. Functional role for Piezo1 in stretch-evoked Ca2+ influx and ATP release in urothelial cell cultures. J Biol Chem. 2014 Jun 6;289(23):16565-75. CrossRef PubMed PubMedCentral

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.