Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2024; 70(1): 67-78

Functioning of oxytocin receptor in the central nervous system and smooth muscles

O. Moroz, O. Basovska, A. Zholos

    Educational and Scientific Center “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Ukraine


Investigation of the mechanism of neuronal communication underlies the fundamental discoveries that promote health. The studies of oxytocin signaling in neurons from or within different brain areas are directed to explore the role of this neurohormonal modulator in the regulation of synaptic transmission and plasticity, neuronal excitability that contributes to the reproduction, social behavior and learning capacity, anxiety, inflammation and differentiation in the brain. Oxytocin is synthesized in supraoptic and paraventricular nuclei of the hypothalamus and when secreted into the bloodstream from the posterior pituitary, it produces a significant effect on uterine contraction and lactation. At the same time this nonapeptide being released within the limbic system and brain cortex modulates neuronal activity by affecting ion channels on their membranes. The oxytocin receptor is primarily coupled to Gq/11 proteins causing phospholipase C activation, Ca2+ release and store-operated Ca2+ entry. These pathways are central for the regulation of the activity of different types of TRP channels, especially of the canonical subfamily (TRPC). Here we highlight the link between oxytocin signaling, which is particularly well investigated in the myometrium, and receptor-operated TRPC4 and multimodal TRPV4 ion channels that participate in oxytocin-dependent regulation of the uterine smooth muscle contractility under various conditions. Importantly, similarly to oxytocin, these channels have been implicated in neuropathic pain behavior, anxiety, fear and depression. Since similar signal transduction pathways are likely to be functional in neuronal cells, we propose that future studies of oxytocin effects in the CNS should also consider the role of these Ca2+-permeable channels.

Keywords: oxytocin, neurons, brain, uterine smooth muscle, ion channels


  1. World Health Organization. WHO recommendations for augmentation of labour. 2014.
  2. Ermisch A, Rühle HJ, Landgraf R, Hess J. Blood-Brain Barrier and Peptides. J Cereb Blood Flow Metab. 1985 Sep 1;5(3):350-7. CrossRef PubMed
  3. Evans SL, Monte OD, Noble P, Averbeck BB. Intranasal oxytocin effects on social cognition: a critique. Brain Res. 2014 Sep 9;0:69. CrossRef PubMed PubMedCentral
  4. Lee MR, Jayant RD. Penetration of the Blood-BrainBarrier by Peripheral Neuropeptides: New Approaches to Enhancing Transport and Endogenous Expression. Cell Tissue Res. 2019 Jan;375(1):287-93. CrossRef PubMed PubMedCentral
  5. Iovino M, Messana T, Tortora A, Giusti C, Lisco G, Giagulli VA, et al. Oxytocin Signaling Pathway: From Cell Biology to Clinical Implications. Endocr Metab Immune Disord Drug Targets. 2021;21(1):91-110. CrossRef PubMed
  6. Wang P, Wang SC, Liu X, Jia S, Wang X, Li T, et al. Neural Functions of Hypothalamic Oxytocin and its Regulation. ASN Neuro. 2022 Jan 1;14:17590914221100706. CrossRef PubMed PubMedCentral
  7. Zatkova M, Reichova A, Bacova Z, Strbak V, Kiss A, Bakos J. Neurite Outgrowth Stimulated by Oxytocin Is Modulated by Inhibition of the Calcium Voltage-Gated Channels. Cell Mol Neurobiol. 2018 Jan;38(1):371-8. CrossRef PubMed
  8. Qiu F, Qiu CY, Cai H, Liu TT, Qu ZW, Yang Z, et al. Oxytocin inhibits the activity of acid-sensing ion channels through the vasopressin, V1A receptor in primary sensory neurons. Br J Pharmacol. 2014 Jun;171(12):3065-76. CrossRef PubMed PubMedCentral
  9. Smith AS, Tabbaa M, Lei K, Eastham P, Butler MJ, Linton L, et al. Local oxytocin tempers anxiety by activating GABAA receptors in the hypothalamic paraventricular nucleus. Psychoneuroendocrinology. 2016 Jan;63:50-8. CrossRef PubMed PubMedCentral
  10. Chatterjee O, Patil K, Sahu A, Gopalakrishnan L, Mol P, Advani J, et al. An overview of the oxytocin-oxytocin receptor signaling network. J Cell Commun Signal. 2016 Dec;10(4):355-60. CrossRef PubMed PubMedCentral
  11. Grinevich V, Knobloch-Bollmann HS, Eliava M, Busnelli M, Chini B. Assembling the Puzzle: Pathways of Oxytocin Signaling in the Brain. Biol Psychiatry. 2016 Feb 1;79(3):155-64. CrossRef PubMed
  12. Sheng W, Harden SW, Tan Y, Krause EG, Frazier CJ. Dendritic osmosensors modulate activity-induced calcium influx in oxytocinergic magnocellular neurons of the mouse PVN. eLife. 2021 Jul 12;10:e63486. CrossRef PubMed PubMedCentral
  13. Armstrong WE, Foehring RC, Kirchner MK, Sladek CD. Electrophysiological properties of identified oxytocin and vasopressin neurones. J Neuroendocrinol. 2019 Mar;31(3):e12666. CrossRef PubMed PubMedCentral
  14. Caldwell HK. Oxytocin and Vasopressin: Powerful Regulators of Social Behavior. The Neuroscientist. 2017 Oct 1;23(5):517-28. CrossRef PubMed
  15. Carter CS. The Oxytocin-Vasopressin Pathway in the Context of Love and Fear. Front Endocrinol [Internet]. 2017 [cited 2023 Mar 22];8. Available from: https://www. CrossRef PubMed PubMedCentral
  16. Sabihi S, Dong SM, Maurer SD, Post C, Leuner B. Oxytocin in the medial prefrontal cortex attenuates anxiety: anatomical and receptor specificity and mechanism of action. Neuropharmacology. 2017 Oct;125:1-12. CrossRef PubMed PubMedCentral
  17. Acevedo-Rodriguez A, Mani SK, Handa RJ. Oxytocin and Estrogen Receptor β in the Brain: An Overview. Front Endocrinol. 2015 Oct 15;6:160. CrossRef PubMed PubMedCentral
  18. Gimpl G, Fahrenholz F. The oxytocin receptor system: structure, function, and regulation. Physiol Rev. 2001 Apr;81(2):629-83. CrossRef PubMed
  19. Zingg HH, Laporte SA. The oxytocin receptor. Trends Endocrinol Metab. 2003 Jul 1;14(5):222-7. CrossRef PubMed
  20. Gravati M, Busnelli M, Bulgheroni E, Reversi A, Spaiardi P, Parenti M, et al. Dual modulation of inward rectifier potassium currents in olfactory neuronal cells by promiscuous G protein coupling of the oxytocin receptor. J Neurochem. 2010;114(5):1424-35. CrossRef PubMed
  21. Liu JJ, Eyring KW, König GM, Kostenis E, Tsien RW. Oxytocin-Modulated Ion Channel Ensemble Controls Depolarization, Integration and Burst Firing in CA2 Pyramidal Neurons. J Neurosci Off J Soc Neurosci. 2022 Oct 12;42(41):7707-20. CrossRef PubMed PubMedCentral
  22. Jurek B, Neumann ID. The Oxytocin Receptor: From Intracellular Signaling to Behavior. Physiol Rev. 2018 Jul;98(3):1805-908. CrossRef PubMed
  23. Busnelli M, Saulière A, Manning M, Bouvier M, Galés C, Chini B. Functional Selective Oxytocin-derived Agonists Discriminate between Individual G Protein Family Subtypes *. J Biol Chem. 2012 Feb 1;287(6):3617-29. CrossRef PubMed PubMedCentral
  24. Wang YF, Hatton GI. Dominant Role of βγ Subunits of G-Proteins in Oxytocin-Evoked Burst Firing. J Neurosci. 2007 Feb 21;27(8):1902-12. CrossRef PubMed PubMedCentral
  25. Arrowsmith S, Wray S. Oxytocin: Its Mechanism of Action and Receptor Signalling in the Myometrium. J Neuroendocrinol. 2014 Jun;26(6):356-69. CrossRef PubMed
  26. Pont JNA, McArdle CA, López Bernal A. OxytocinStimulated NFAT Transcriptional Activation in Human Myometrial Cells. Mol Endocrinol. 2012 Oct;26(10): 1743-56. CrossRef PubMed PubMedCentral
  27. Zhong M, Yang M, Sanborn BM. Extracellular signalregulated kinase 1/2 activation by myometrial oxytocin receptor involves Galpha(q)Gbetagamma and epidermal growth factor receptor tyrosine kinase activation. Endocrinology. 2003 Jul;144(7):2947-56. CrossRef PubMed
  28. Zhong M, Boseman ML, Millena AC, Khan SA. Oxytocin Induces the Migration of Prostate Cancer Cells: Involvement of the Gi-Coupled Signaling Pathway. Mol Cancer Res. 2010 Aug 1;8(8):1164-72. CrossRef PubMed PubMedCentral
  29. Busnelli M, Chini B. Molecular Basis of Oxytocin Receptor Signalling in the Brain: What We Know and What We Need to Know. Curr Top Behav Neurosci. 2018;35:3-29. CrossRef PubMed
  30. Sharma A, Nakade UP, Choudhury S, Garg SK. Functional involvement of protein kinase C, Rho-kinase and TRPC3 decreases while PLC increases with advancement of pregnancy in mediating oxytocin-induced myometrial contractions in water buffaloes ( Bubalus bubalis ). Theriogenology. 2017 Apr 1;92:176-89. CrossRef PubMed
  31. McKay EC, Counts SE. Oxytocin Receptor Signaling in Vascular Function and Stroke. Front Neurosci [Internet]. 2020 [cited 2023 Mar 19];14. Available from: https://www. CrossRef PubMed PubMedCentral
  32. Kumar S, Singh U, Goswami C, Singru PS. Transient receptor potential vanilloid 5 (TRPV5), a highly Ca2+ -selective TRP channel in the rat brain: relevance to neuroendocrine regulation. J Neuroendocrinol. 2017 Apr;29(4). CrossRef PubMed
  33. Hu B, Boyle CA, Lei S. Activation of Oxytocin Receptors Excites Subicular Neurons by Multiple Signaling and Ionic Mechanisms. Cereb Cortex N Y NY. 2020 Dec 21;31(5):2402-15. CrossRef PubMed PubMedCentral
  34. Gong L, Gao F, Li J, Li J, Yu X, Ma X, et al. Oxytocininduced membrane hyperpolarization in pain-sensitive dorsal root ganglia neurons mediated by Ca(2+)/nNOS/NO/ KATP pathway. Neuroscience. 2015 Mar 19;289:417-28. CrossRef PubMed
  35. Li J, Xue B, Han T, Huang K, Gong L, Ma X, et al. Oxytocin down-regulates mesenteric afferent sensitivity via the enteric OTR/nNOS/NO/KATP pathway in rat. Neurogastroenterol Motil Off J Eur Gastrointest Motil Soc. 2015 Jan;27(1):51-62. CrossRef PubMed
  36. Nersesyan Y, Demirkhanyan L, Cabezas-Bratesco D, Oakes V, Kusuda R, Dawson T, et al. Oxytocin Modulates Nociception as an Agonist of Pain-Sensing TRPV1. Cell Rep. 2017 Nov 7;21(6):1681-91. CrossRef PubMed PubMedCentral
  37. Talpo F, Spaiardi P, Castagno AN, Maniezzi C, Raffin F, Terribile G, et al. Neuromodulatory functions exerted by oxytocin on different populations of hippocampal neurons in rodents. Front Cell Neurosci. 2023;17:1082010. CrossRef PubMed PubMedCentral
  38. van den Burg EH, Stindl J, Grund T, Neumann ID, Strauss O. Oxytocin Stimulates Extracellular Ca2+ Influx Through TRPV2 Channels in Hypothalamic Neurons to Exert Its Anxiolytic Effects. Neuropsychopharmacology. 2015 Dec;40(13):2938-47. CrossRef PubMed PubMedCentral
  39. Nie J, Liu X, Guo SW. Immunoreactivity of oxytocin receptor and transient receptor potential vanilloid type 1 and its correlation with dysmenorrhea in adenomyosis. Am J Obstet Gynecol. 2010 Apr;202(4):346.e1-8. CrossRef PubMed
  40. Storozhuk MV, Moroz OF, Zholos AV. Multifunctional TRPV1 Ion Channels in Physiology and Pathology with Focus on the Brain, Vasculature, and Some Visceral Systems. BioMed Res Int. 2019;2019. CrossRef PubMed PubMedCentral
  41. Yang XR, Lin MJ, McIntosh LS, Sham JSK. Functional expression of transient receptor potential melastatin- and vanilloid-related channels in pulmonary arterial and aortic smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2006 Jun;290(6):L1267-1276. CrossRef PubMed
  42. Villegas D, Giard O, Brochu-Gaudreau K, Rousseau É. Activation of TRPV4 channels leads to a consistent tocolytic effect on human myometrial tissues. Eur J Obstet Gynecol Reprod Biol X. 2021 Apr 1;10. CrossRef PubMed PubMedCentral
  43. Benítez-Angeles M, Juárez-González E, Vergara-Jaque A, Llorente I, Rangel-Yescas G, Thébault SC, et al. Unconventional interactions of the TRPV4 ion channel with beta-adrenergic receptor ligands. Life Sci Alliance. 2023 Mar 1;6(3). CrossRef PubMed PubMedCentral
  44. Ying L, Becard M, Lyell D, Han X, Shortliffe L, Husted CI, et al. The transient receptor potential vanilloid 4 channel modulates uterine tone during pregnancy. Sci Transl Med. 2015 Dec 23;7(319):319ra204. CrossRef PubMed
  45. Fichna J, Poole DP, Veldhuis N, MacEachern SJ, Saur D, Zakrzewski PK, et al. Transient receptor potential vanilloid 4 inhibits mouse colonic motility by activating NO-dependent enteric neurotransmission. J Mol Med. 2015 Dec 2;93(12):1297-309. CrossRef PubMed
  46. Arrowsmith S, Keov P, Muttenthaler M, Gruber CW. Contractility Measurements of Human Uterine Smooth Muscle to Aid Drug Development. J Vis Exp JoVE. 2018 Jan 26;(131). CrossRef PubMed PubMedCentral
  47. Ando M, Hayashi Y, Hitomi S, Shibuta I, Furukawa A, Oto T, et al. Oxytocin-Dependent Regulation of TRPs Expression in Trigeminal Ganglion Neurons Attenuates Orofacial Neuropathic Pain Following Infraorbital Nerve Injury in Rats. Int J Mol Sci. 2020 Dec 1;21(23):9173. CrossRef PubMed PubMedCentral
  48. Lakk M, Young D, Baumann JM, Jo AO, Hu H, Križaj D. Polymodal TRPV1 and TRPV4 Sensors Colocalize but Do Not Functionally Interact in a Subpopulation of Mouse Retinal Ganglion Cells. Front Cell Neurosci. 2018;12. CrossRef PubMed PubMedCentral
  49. Ryskamp DA, Jo AO, Frye AM, Vazquez-Chona F, MacAulay N, Thoreson WB, et al. Swelling and Eicosanoid Metabolites Differentially Gate TRPV4 Channels in Retinal Neurons and Glia. J Neurosci. 2014 Nov 19;34(47):15689-700. CrossRef PubMed PubMedCentral
  50. Shibasaki K, Ikenaka K, Tamalu F, Tominaga M, Ishizaki Y. A novel subtype of astrocytes expressing TRPV4 (transient receptor potential vanilloid 4) regulates neuronal excitability via release of gliotransmitters. J Biol Chem. 2014 May 23;289(21):14470-80. CrossRef PubMed PubMedCentral
  51. Wang Z, Zhou L, An D, Xu W, Wu C, Sha S, et al. TRPV4- induced inflammatory response is involved in neuronal death in pilocarpine model of temporal lobe epilepsy in mice. Cell Death Dis. 2019 May 16;10(6):386. CrossRef PubMed PubMedCentral
  52. Tsvilovskyy VV, Zholos AV, Aberle T, Philipp SE, Dietrich A, Zhu MX, et al. Deletion of TRPC4 and TRPC6 in mice impairs smooth muscle contraction and intestinal motility in vivo. Gastroenterology. 2009 Oct;137(4):1415-24. CrossRef PubMed PubMedCentral
  53. Tiruppathi C, Freichel M, Vogel SM, Paria BC, Mehta D, Flockerzi V, et al. Impairment of store-operated Ca2+ entry in TRPC4(-/-) mice interferes with increase in lung microvascular permeability. Circ Res. 2002 Jul 12;91(1):70-6. CrossRef PubMed
  54. Avila-Medina J, Mayoral-Gonzalez I, DominguezRodriguez A, Gallardo-Castillo I, Ribas J, Ordoñez A, et al. The Complex Role of Store Operated Calcium Entry Pathways and Related Proteins in the Function of Cardiac, Skeletal and Vascular Smooth Muscle Cells. Front Physiol. 2018;9:257. CrossRef PubMed PubMedCentral
  55. Jeon J, Bu F, Sun G, Tian JB, Ting SM, Li J, et al. Contribution of TRPC Channels in Neuronal Excitotoxicity Associated With Neurodegenerative Disease and Ischemic Stroke. Front Cell Dev Biol. 2021 Jan 8;8:618663. CrossRef PubMed PubMedCentral
  56. Briffaud V, Williams P, Courty J, Broberger C. Excitation of tuberoinfundibular dopamine neurons by oxytocin: crosstalk in the control of lactation. J Neurosci Off J Soc Neurosci. 2015 Mar 11;35(10):4229-37. CrossRef PubMed PubMedCentral
  57. Thakur DP, Tian JB, Jeon J, Xiong J, Huang Y, Flockerzi V, et al. Critical roles of Gi/o proteins and phospholipase C-δ1 in the activation of receptor-operated TRPC4 channels. Proc Natl Acad Sci U S A. 2016 Jan 26;113(4):109-1097. CrossRef PubMed PubMedCentral
  58. Tian J bin, Yang J, Joslin WC, Flockerzi V, Prescott SA, Birnbaumer L, et al. TRPC4 and GIRK channels underlie neuronal coding of firing patterns that reflect Gq/11-Gi/o coincidence signals of variable strengths. Proc Natl Acad Sci U S A. 2022 May 17;119(20):e2120870119. CrossRef PubMed PubMedCentral
  59. Zholos AV. Regulation of TRP-like muscarinic cation current in gastrointestinal smooth muscle with special reference to PLC/InsP3/Ca2+ system. Acta Pharmacol Sin. 2006 Jul;27(7):833-42. CrossRef PubMed
  60. El-Hassar L, Hagenston AM, D'Angelo LB, Yeckel MF. Metabotropic glutamate receptors regulate hippocampal CA1 pyramidal neuron excitability via Ca2+ wavedependent activation of SK and TRPC channels. J Physiol. 2011 Jul 1;589(Pt 13):3211-29. CrossRef PubMed PubMedCentral
  61. Shimamura K, Kusaka M, Sperelakis N. Oxytocin induces an inward current in pregnant rat myometrial cells. Can J Physiol Pharmacol. 1994 Jul;72(7):759-63. CrossRef PubMed
  62. Ulloa A, Gonzales AL, Zhong M, Kim YS, Cantlon J, Clay C, et al. Reduction in TRPC4 expression specifically attenuates G-protein coupled receptor-stimulated increases in intracellular calcium in human myometrial cells. Cell Calcium. 2009 Jul;46(1):73-84. CrossRef PubMed PubMedCentral
  63. Chung S, Kim YH, Joeng JH, Ahn DS. Transient receptor potential c4/5 like channel is involved in stretch-induced spontaneous uterine contraction of pregnant rat. Korean J Physiol Pharmacol Off J Korean Physiol Soc Korean Soc Pharmacol. 2014 Dec;18(6):503-8. CrossRef PubMed PubMedCentral
  64. Bouron A. Neuronal Store-Operated Calcium Channels. Mol Neurobiol. 2023 Aug;60(8):4517-46. CrossRef PubMed
  65. Noble D, Borysova L, Wray S, Burdyga T. Store-operated Ca2+ entry and depolarization explain the anomalous behaviour of myometrial SR: effects of SERCA inhibition on electrical activity, Ca2+ and force. Cell Calcium. 2014 Sep;56(3):188-94. CrossRef PubMed PubMedCentral
  66. Mitra R, Hasan G. Store-operated Ca2+ entry regulates neuronal gene expression and function. Curr Opin Neurobiol. 2022 Apr;73:102520. CrossRef PubMed
  67. Kougioumoutzakis A, Pelletier JG, Laplante I, Khlaifia A, Lacaille JC. TRPC1 mediates slow excitatory synaptic transmission in hippocampal oriens/alveus interneurons. Mol Brain. 2020 Jan 29;13(1):12. CrossRef PubMed PubMedCentral
  68. Liu XR, Zhang MF, Yang N, Liu Q, Wang RX, Cao YN, et al. Enhanced store-operated Ca2+ entry and TRPC channel expression in pulmonary arteries of monocrotaline-induced pulmonary hypertensive rats. Am J Physiol Cell Physiol. 2012 Jan 1;302(1):C77-87. CrossRef PubMed PubMedCentral
  69. Dalrymple A, Slater DM, Beech D, Poston L, Tribe RM. Molecular identification and localization of Trp homologues, putative calcium channels, in pregnant human uterus. Mol Hum Reprod. 2002 Oct;8(10):946-51. CrossRef PubMed
  70. Zholos AV. TRP Channels in Respiratory Pathophysiology: the Role of Oxidative, Chemical Irritant and Temperature Stimuli. Curr Neuropharmacol. 2015;13(2):279-91. CrossRef PubMed PubMedCentral
  71. White JPM, Cibelli M, Urban L, Nilius B, McGeown JG, Nagy I. TRPV4: Molecular Conductor of a Diverse Orchestra. Physiol Rev. 2016 Jul;96(3):911-73. CrossRef PubMed
  72. Zhang Q, Dias F, Fang Q, Henry G, Wang Z, Suttle A, et al. Involvement of Sensory Neurone-TRPV4 in Acute and Chronic Itch Behaviours. Acta Derm Venereol. 2022 Feb 22;102:adv00651. CrossRef PubMed PubMedCentral
  73. Contet C, Goulding SP, Kuljis DA, Barth AL. BK Channels in the Central Nervous System. Int Rev Neurobiol. 2016;128:281-342. CrossRef PubMed PubMedCentral
  74. Wang R, Tu S, Zhang J, Shao A. Roles of TRP Channels in Neurological Diseases. Oxid Med Cell Longev. 2020 Sep 7;2020:e7289194. CrossRef PubMed PubMedCentral
  75. Song X, Zhao Y, Narcisse L, Duffy H, Kress Y, Lee S, et al. Canonical transient receptor potential channel 4 (TRPC4) co-localizes with the scaffolding protein ZO-1 in human fetal astrocytes in culture. Glia. 2005 Feb;49(3):418-29. CrossRef PubMed
  76. Maksymchuk N, Sakurai A, Cox DN, Cymbalyuk G. Transient and Steady-State Properties of Drosophila Sensory Neurons Coding Noxious Cold Temperature. Front Cell Neurosci. 2022;16. CrossRef PubMed PubMedCentral

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.