|
|
|
|
PATHOPHYSIOLOGICAL MECHANISMS OF DEEP VEIN THROMBOSIS
S. Chooklin, S. Chuklin
Saint Paraskeva Medical Center, Lviv, Ukraine
DOI: https://doi.org/10.15407/fz69.06.133
Abstract
Deep venous thrombosis is a frequent multifactorial disease
and most of the time is triggered by the interaction between
acquired risk factors, particularly immobility, and hereditary
risk factors such as thrombophilias. The mechanisms
underlying deep venous thrombosis are not fully elucidated;
however, in recent years the role of venous flow, endothelium,
platelets, leukocytes, and the interaction between inflammation
and hemostasis has been determined. Alteration of venous
blood flow produces endothelial activation, favoring the
adhesion of platelets and leukocytes, which, through tissue
factor expression and neutrophil extracellular traps formation,
contribute to the activation of coagulation, trapping more cells,
such as red blood cells, monocytes, eosinophils, lymphocytes.
The coagulation factor XI-driven propagation phase of blood
coagulation plays a major role in venous thrombus growth, but
a minor role in hemostasis. In this work, the main mechanisms involved in the pathophysiology of deep vein thrombosis are
described.
Keywords:
deep vein thrombosis; blood flow; endothelial dysfunction; blood cells.
References
- Raskob GE, Angchaisuksiri P, Blanco AN, Buller H, Gallus A, Hunt BJ, Hylek EM, Kakkar A, Konstantinides SV, McCumber M, Ozaki Y, Wendelboe A, Weitz JI; ISTH Steering Committee for World Thrombosis Day. Thrombosis: a major contributor to global disease burden. Arterioscler Thromb Vascul Biol. 2014; 34(11): 2363-71.
CrossRef
PubMed
- Aird WC. Vascular bed-specific thrombosis. J Thromb Haemost. 2007;5 Suppl 1:283-91.
CrossRef
PubMed
- Lutsey PL, Zakai NA. Epidemiology and prevention of venous thromboembolism. Nat Rev Cardiol. 2023;20(4): 248-62.
CrossRef
PubMed PubMedCentral
- Jaffray J, Young G. Deep vein thrombosis in pediatric patients. Pediatr Blood Cancer. 2018;65(3):e26881.
CrossRef
PubMed
- Koupenova M, Kehrel BE, Corkrey HA, Freedman JE. Thrombosis and platelets: an update. Eur Heart J. 2017;38(11):785-91.
CrossRef
PubMed
- Kanthi Y, Piazza G. Great debates in vascular medicine: extended duration anticoagulation for unprovoked venous thromboembolism - coming to consensus when the debate rages on. Vascul Med. 2018;23(4):384-7.
CrossRef
PubMed
- Colling ME, Tourdot BE, Kanthi Y. Inflammation, infection and venous thromboembolism. Circ Res. 2021;128(12):2017-36.
CrossRef
PubMed PubMedCentral
- Preston RJS, O'Sullivan JM, O'Donnell JS. Advances in understanding the molecular mechanisms of venous thrombosis. Br J Haematol. 2019;186(1):13-23.
CrossRef
PubMed
- Zuo Y, Kanthi Y, Knight JS, Kim AHJ. The interplay between neutrophils, complement, and microthrombi in COVID-19. Best Pract Res Clin Rheumatol. 2021; 35:101661.
CrossRef
PubMed PubMedCentral
- Navarrete S, Solar C, Tapia R, Pereira J, Fuentes E, Palomo I. Pathophysiology of deep vein thrombosis. Clin Exp Med. 2023;23(3):645-54.
CrossRef
PubMed
- Mereweather LJ, Constantinescu-Bercu A, Crawley JTB, Salles-Crawley II. Platelet-Neutrophil Crosstalk in Thrombosis. Int J Mol Sci. 2023;24(2):1266.
CrossRef
PubMed PubMedCentral
- Sang Y, Roest M, de Laat B, de Groot PG, Huskens D. Interplay between platelets and coagulation. Blood Rev. 2021;46:100733.
CrossRef
PubMed PubMedCentral
- Delluc A, Lacut K, Rodger MA. Arterial and venous thrombosis: What's the link? A narrative review. Thromb Res. 2020;191:97-102.
CrossRef
PubMed
Prandoni, P. Venous and arterial thrombosis: Two aspects of the same disease? Eur J Int Med. 2009, 20, 660-1
CrossRef
PubMed
- Carminita E, Crescence L, Brouilly N, Altié A, PanicotDubois L, Dubois C. DNAse-dependent, NET-independent pathway of thrombus formation in vivo. Proc Natl Acad Sci USA. 2021;118(28):e2100561118.
CrossRef
PubMed PubMedCentral
- Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD Jr, Wrobleski SK, Wakefield TW, Hartwig JH, Wagner DD. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA. 2010;107(36):15880-5.
CrossRef
PubMed PubMedCentral
- von Brühl ML, Stark K, Steinhart A, Chandraratne S, Konrad I, Lorenz M, Khandoga A, Tirniceriu A, Coletti R, Köllnberger M, Byrne RA, Laitinen I, Walch A, Brill A, Pfeiler S, Manukyan D, Braun S, Lange P, Riegger J, Ware J, Eckart A, Haidari S, Rudelius M, Schulz C, Echtler K, Brinkmann V, Schwaiger M, Preissner KT, Wagner DD, Mackman N, Engelmann B, Massberg S. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209(4):819-35.
CrossRef
PubMed PubMedCentral
- Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev. 2011;91(1):327-87.
CrossRef
PubMed PubMedCentral
- Welsh JD, Hoofnagle MH, Bamezai S, Oxendine M, Lim L, Hall JD, Yang J, Schultz S, Engel JD, Kume T, Oliver G, Jimenez JM, Kahn ML. Hemodynamic regulation of perivalvular endothelial gene expression prevents deep venous thrombosis. J Clin Invest. 2019;129(12):5489-500.
CrossRef
PubMed PubMedCentral
- Schofield Z, Baksamawi HA, Campos J, Alexiadis A, Nash GB, Brill A, Vigolo D. The role of valve stiffness in the insurgence of deep vein thrombosis. Commun Mater. 2020;1(1):65.
CrossRef
PubMed PubMedCentral
- Lurie F, Kistner RL, Eklof B, Kessler D. Mechanism of venous valve closure and role of the valve in circulation: a new concept. J Vascul Surg. 2003;38(5):955-61.
CrossRef
PubMed
- Shen L, Zhou K, Liu H, Yang J, Huang S, Yu F, Huang D. Prediction of mechanosensitive genes in vascular endothelial cells under high wall shear stress. Front Genet. 2022;12:796812.
CrossRef
PubMed PubMedCentral
- Dormer KJ, Gkotsoulias E. The role of hemodynamic shear stress in healing chronic wounds. Wounds. 2022;34(11):254-62.
CrossRef
PubMed
- Methe H, Balcells M, Alegret Mdel C, Santacana M, Molins B, Hamik A, Jain MK, Edelman ER. Vascular bed origin dictates flow pattern regulation of endothelial adhesion molecule expression. Am J Physiol Heart Circ Physiol. 2007;292(5):H2167-75.
CrossRef
PubMed
- Han Z, Liu Q, Li H, Zhang M, You L, Lin Y, Wang K, Gou Q, Wang Z, Zhou S, Cai Y, Yuan L, Chen H. The role of monocytes in thrombotic diseases: a review. Front Cardiovascul Med. 2023;10:1113827.
CrossRef
PubMed PubMedCentral
- Raffetto JD, Mannello F. Pathophysiology of chronic venous disease. Int Angiol. 2014;33(3):212-21.
- Santler B, Goerge T. Chronic venous insufficiency - a review of pathophysiology, diagnosis, and treatment. J Dtsch Dermatol Ges. 2017;15(5):538-56.
CrossRef
- Gupta N, Sahu A, Prabhakar A, Chatterjee T, Tyagi T, Kumari B, Khan N, Nair V, Bajaj N, Sharma M, Ashraf MZ. Activation of NLRP3 inflammasome complex potentiates venous thrombosis in response to hypoxia. Proc Natl Acad Sci USA. 2017;114(18):4763-8.
CrossRef
PubMed PubMedCentral
- Liang X, Arullampalam P, Yang Z, Ming XF. Hypoxia enhances endothelial intercellular adhesion molecule 1 protein level through upregulation of arginase type ii and mitochondrial oxidative stress. Front Physiol. 2019;10:1003.
CrossRef
PubMed PubMedCentral
- Pak O, Nolte A, Knoepp F, Giordano L, Pecina P, Hüttemann M, Grossman LI, Weissmann N, Sommer N. Mitochondrial oxygen sensing of acute hypoxia in specialized cells - Is there a unifying mechanism? Biochim Biophys Acta Bioenerg. 2022;1863(8):148911.
CrossRef
PubMed
- Xie Y, Li Y, Chen J, Ding H, Zhang X. Early growth response-1: Key mediators of cell death and novel targets for cardiovascular disease therapy. Front Cardiovascul Med. 2023;10:1162662.
CrossRef
PubMed PubMedCentral
- Bovill EG, van der Vliet A. Venous valvular stasis-associated hypoxia and thrombosis: What is the link? Annu Rev Physiol. 2011;73:527-45.
CrossRef
PubMed
- Huang X, Li Y, Li X, Fan D, Xin HB, Fu M. TRIM14 promotes endothelial activation via activating NF-κB signaling pathway. J Mol Cell Biol. 2020;12(3):176-89.
CrossRef
PubMed PubMedCentral
- Karthikkeyan G, Nareshkumar RN, Aberami S, Sulochana KN, Vedantham S, Coral K. Hyperglycemia induced early growth response-1 regulates vascular dysfunction in human retinal endothelial cells. Microvascul Res. 2018;117:37-43.
CrossRef
PubMed
- Chelombitko MA, Fedorov AV, Ilyinskaya OP, Zinovkin RA, Chernyak BV. Role of reactive oxygen species in mast cell degranulation. Biochemistry. 2016; 81(12):1564-77.
CrossRef
PubMed
- Ponomaryov T, Payne H, Fabritz L, Wagner DD, Brill A. Mast cells granular contents are crucial for deep vein thrombosis in mice. Circ Res. 2017;121(8):941-50.
CrossRef
PubMed PubMedCentral
- Torres R, de Castellarnau C, Ferrer LL, Puigdemont A, Santamaría LF, de Mora F. Mast cells induce upregulation of P-selectin and intercellular adhesion molecule 1 on carotid endothelial cells in a new in vitro model of mast cell to endothelial cell communication. Immunol Cell Biol. 2002;80(2):170-7.
CrossRef
PubMed
- Lenzi C, Stevens J, Osborn D, Hannah MJ, Bierings R, Carter T. Synaptotagmin 5 regulates Ca2+-dependent Weibel-Palade body exocytosis in human endothelial cells. J Cell Sci. 2019;132(5):jcs221952.
CrossRef
PubMed PubMedCentral
- Kamegashira A, Yanase Y, Takahagi S, Saito R, Uchida K, Kawaguchi T, Ishii K, Tanaka A, Ozawa K, Hide M. Histamine- or vascular endothelial growth factor-induced tissue factor expression and gap formation between vascular endothelial cells are synergistically enhanced by lipopolysaccharide, tumor necrosis factor-α, interleukin (IL)-33 or IL-1β. J Dermatol. 2020;47(11):1293-300.
CrossRef
PubMed
- Neubauer K, Zieger B. Endothelial cells and coagulation. Cell Tissue Res. 2022;387(3):391-8.
CrossRef
PubMed PubMedCentral
- Bochenek ML, Schafer K. Role of endothelial cells in acute and chronic thrombosis. Hamostaseologie. 2019;39(2):128-39.
CrossRef
PubMed
- Bochenek ML, Schutz E, Schafer K. Endothelial cell senescence and thrombosis: ageing clots. Thromb Res. 2016;147:36-45.
CrossRef
PubMed
- Li WD, Li XQ. Endothelial progenitor cells accelerate the resolution of deep vein thrombosis. Vascul Pharmacol. 2016;83:10-16.
CrossRef
PubMed
- Lehmann M, Schoeman RM, Krohl PJ, Wallbank AM, Samaniuk JR, Jandrot-Perrus M, Neeves KB. Platelets drive thrombus propagation in a hematocrit and glycoprotein VI-dependent manner in an in vitro venous thrombosis model. Arterioscler Thromb Vasc Biol. 2018;38(5):1052-62.
CrossRef
PubMed PubMedCentral
- Brill A, Fuchs TA, Chauhan AK, Yang JJ, De Meyer SF, Kollnberger M, Wakefield TW, Lammle B, Massberg S, Wagner DD. Von Willebrand factor-mediated platelet adhesion is critical for deep vein thrombosis in mouse models. Blood. 2011;117(4):1400-7.
CrossRef
PubMed PubMedCentral
- Cameron SJ, Mix DS, Ture SK, Schmidt RA, Mohan A, Pariser D, Stoner MC, Shah P, Chen L, Zhang H, Field DJ, Modjeski KL, Toth S, Morrell CN. Hypoxia and ischemia promote a maladaptive platelet phenotype. Arterioscler Thromb Vascul Biol. 2018;38(7):1594-606.
CrossRef
PubMed PubMedCentral
- Tyagi T, Ahmad S, Gupta N, Sahu A, Ahmad Y, Nair V, Chatterjee T, Bajaj N, Sengupta S, Ganju L, Singh SB, Ashraf MZ. Altered expression of platelet proteins and calpain activity mediate hypoxia-induced prothrombotic phenotype. Blood. 2014;123(8):1250-60.
CrossRef
PubMed
- Mammadova-Bach E, Ollivier V, Loyau S, Schaff M, Dumont B, Favier R, Freyburger G, Latger-Cannard V, Nieswandt B, Gachet C, Mangin PH, Jandrot-Perrus M. Platelet glycoprotein VI binds to polymerized fibrin and promotes thrombin generation. Blood. 2015;126(5):683-91.
CrossRef
PubMed
- Swystun LL, Liaw PC. The role of leukocytes in thrombosis. Blood. 2016;128(6):753-62.
CrossRef
PubMed
- Bourguignon A, Tasneem S, Hayward CPM. Update on platelet procoagulant mechanisms in health and in bleeding disorders. Int J Lab Hematol. 2022;44 Suppl 1:89-100.
CrossRef
PubMed
- Reinhardt C, von Brühl ML, Manukyan D, Grahl L, Lorenz M, Altmann B, Dlugai S, Hess S, Konrad I, Orschiedt L, Mackman N, Ruddock L, Massberg S, Engelmann B. Protein disulfide isomerase acts as an injury response signal that enhances fibrin generation via tissue factor activation. J Clin Invest. 2008;118(3):1110-22.
CrossRef
PubMed PubMedCentral
- Longstaff C, Kolev K. Basic mechanisms and regulation of fibrinolysis. J Thromb Haemost. 2015;13 Suppl 1:S98-105.
CrossRef
PubMed
- Savchenko AS, Martinod K, Seidman MA, Wong SL, Borissoff JI, Piazza G, Libby P, Goldhaber SZ, Mitchell RN, Wagner DD. Neutrophil extracellular traps form predominantly during the organizing stage of human venous thromboembolism development. J Thromb Haemost. 2014;12(6):860-70.
CrossRef
PubMed PubMedCentral
- Mangold A, Alias S, Scherz T, Hofbauer T, Jakowitsch J, Panzenbock A, Simon D, Laimer D, Bangert C, Kammerlander A, Mascherbauer J, Winter MP, Distelmaier K, Adlbrecht C, Preissner KT, Lang IM. Coronary neutrophil extracellular trap burden and deoxyribonuclease activity in ST-elevation acute coronary syndrome are predictors of ST-segment resolution and infarct size. Circ Res. 2015;116(7):1182-92.
CrossRef
PubMed
- Chrysanthopoulou A, Mitroulis I, Apostolidou E, Arelaki S, Mikroulis D, Konstantinidis T, Sivridis E, Koffa M, Neutrophil extracellular traps promote differentiation and function of fibroblasts. J Pathol. 2014;233(3):294-307.
CrossRef
PubMed
- Shi C, Yang L, Braun A, Anders HJ. Extracellular DNAA danger signal triggering immunothrombosis. Front Immunol. 2020;11:568513.
CrossRef
PubMed PubMedCentral
- Folco EJ, Mawson TL, Vromman A, Bernardes-Souza B, Franck G, Persson O, Nakamura M, Newton G, Luscinskas FW, Libby P. Neutrophil extracellular traps induce endothelial cell activation and tissue factor production through interleukin-1alpha and cathepsin G. Arterioscler Thromb Vascul Biol. 2018;38(8):1901-12.
CrossRef
PubMed PubMedCentral
- Zhang Y, Cui J, Zhang G, Wu C, Abdel-Latif A, Smyth SS, Shiroishi T, Mackman N, Wei Y, Tao M, Li Z. Inflammasome activation promotes venous thrombosis through pyroptosis. Blood Adv. 2021;5(12):2619-23.
CrossRef
PubMed PubMedCentral
- Campos J, Ponomaryov T, De Prendergast A, Whitworth K, Smith CW, Khan AO, Kavanagh D, Brill A. Neutrophil extracellular traps and inflammasomes cooperatively promote venous thrombosis in mice. Blood Adv. 2021;5(9):2319-24.
CrossRef
PubMed PubMedCentral
- Kannemeier C, Shibamiya A, Nakazawa F, Trusheim H, Ruppert C, Markart P, Song Y, Tzima E, Kennerknecht E, Niepmann M, von Bruehl ML, Sedding D, Massberg S, Günther A, Engelmann B, Preissner KT. Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Proc Natl Acad Sci USA. 2007;104(15):6388-93.
CrossRef
PubMed PubMedCentral
- Shahneh F, Christian Probst H, Wiesmann SC, AGonzalez N, Ruf W, Steinbrink K, Raker VK, Becker C. Inflammatory monocyte counts determine venous blood clot formation and resolution. Arterioscler Thromb Vascul Biol. 2022;42(2):145-55.
CrossRef
PubMed
- Lipets EN, Antonova OA, Shustova ON, Losenkova KV, Mazurov AV, Ataullakhanov FI. Use of Thrombodynamics for revealing the participation of platelet, erythrocyte, endothelial, and monocyte microparticlesin coagulation activation and propagation. PLoS One. 2020;15(5):e0227932.
CrossRef
PubMed PubMedCentral
- Semeraro F, Ammollo CT, Semeraro N, Colucci M. Tissue factor-expressing monocytes inhibit fibrinolysis through a TAFI-mediated mechanism, and make clots resistant to heparins. Haematologica. 2009;94(6):819-26.
CrossRef
PubMed PubMedCentral
- Ames PR, Margaglione M, Mackie S, Alves JD. Eosinophilia and thrombophilia in churg strauss syndrome: a clinical and pathogenetic overview. Clin Appl Thromb Hemost. 2010;16(6):628-36.
CrossRef
PubMed
- Uderhardt S, Ackermann JA, Fillep T, Hammond VJ, Willeit J, Santer P, Mayr M, Biburger M, Miller M, Zellner KR, Stark K, Zarbock A, Rossaint J, Schubert I, Mielenz D, Dietel B, Raaz-Schrauder D, Ay C, Gremmel T, Thaler J, Heim C, Herrmann M, Collins PW, Schabbauer G, Mackman N, Voehringer D, Nadler JL, Lee JJ, Massberg S, Rauh M, Kiechl S, Schett G, O'Donnell VB, Krönke G. Enzymatic lipid oxidation by eosinophils propagates coagulation, hemostasis, and thrombotic disease. J Exp Med. 2017;214(7):2121-38.
CrossRef
PubMed PubMedCentral
- Luther N, Shahneh F, Brähler M, Krebs F, Jäckel S, Subramaniam S, Stanger C, Schönfelder T, Kleis-Fischer B, Reinhardt C, Probst HC, Wenzel P, Schäfer K, Becker C. Innate Effector-Memory T-Cell activation regulates post-thrombotic vein wall inflammation and thrombus resolution. Circ Res. 2016;119(12):1286-95.
CrossRef
PubMed
- Schönfelder T, Brandt M, Kossmann S, Knopp T, Münzel T, Walter U, Karbach SH, Wenzel P. Lack of T-bet reduces monocytic interleukin-12 formation and accelerates thrombus resolution in deep vein thrombosis. Sci Rep. 2018;8(1):3013.
CrossRef
PubMed PubMedCentral
- Shahneh F, Grill A, Klein M, Frauhammer F, Bopp T, Schäfer K, Raker VK, Becker C. Specialized regulatory T cells control venous blood clot resolution through SPARC. Blood. 2021;137(11):1517-26.
CrossRef
PubMed
- Lassila R, Weisel JW.Role of red blood cells in clinically relevant bleeding tendencies and complications. J Thromb Haemost. 2023 May 18:S1538-7836(23)00422-1.
- Goel MS, Diamond SL. Adhesion of normal erythrocytes at depressed venous shear rates to activated neutrophils, activated platelets, and fibrin polymerized from plasma. Blood. 2002;100(10):3797-803.
CrossRef
PubMed
- Whelihan MF, Lim MY, Mooberry MJ, Piegore MG, Ilich A, Wogu A, Cai J, Monroe DM, Ataga KI, Mann KG, Key NS. Thrombin generation and cell-dependent hypercoagulability in sickle cell disease. J Thromb Haemost. 2016;14(10):1941-52.
CrossRef
PubMed
- Brill A, Fuchs TA, Savchenko AS, Thomas GM, Martinod K, De Meyer SF, Bhandari AA, Wagner DD. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost. 2012;10(1):136-44.
CrossRef
PubMed PubMedCentral
- Kattula S, Byrnes JR, Martin SM, Holle LA, Cooley BC, Flick MJ, Wolberg AS. Factor XIII in plasma, but not in platelets, mediates red blood cell retention in clots and venous thrombus size in mice. Blood Adv. 2018;2(1):25-35.
CrossRef
PubMed PubMedCentral
- Byrnes JR, Duval C, Wang Y, Hansen CE, Ahn B, Mooberry MJ, Clark MA, Johnsen JM, Lord ST, Lam WA, Meijers JC, Ni H, Ariëns RA, Wolberg AS. Factor XIIIa-dependent retention of red blood cells in clots is mediated by fibrin α-chain crosslinking. Blood. 2015;126(16):1940-8.
CrossRef
PubMed PubMedCentral
- Bosh A, Uleryk E, Avila L. Role of factor VIII, IX, and XI in venous thrombosis recurrence risk in adults and children: A systematic review. Res Pract Thromb Haemost. 2023;7(2):100064.
CrossRef
PubMed PubMedCentral
- Sugita C, Yamashita A, Moriguchi-Goto S, Furukoji E, Takahashi M, Harada A, Soeda T, Kitazawa T, Hattori K, Tamura S, Asada Y. Factor VIII contributes to plateletfibrin thrombus formation via thrombin generation under low shear conditions. Thromb Res. 2009;124:601-7.
CrossRef
PubMed
- Sugita C, Yamashita A, Matsuura Y, Iwakiri T, Okuyama N, Matsuda S, et al. Elevated plasma factor VIII enhances venous thrombus formation in rabbits: contribution of factor XI, von Willebrand factor and tissue factor. Thromb Res. 2009;124(5):601-7.
CrossRef
PubMed
- Grover SP, Olson TM, Cooley BC, Mackman N. Model-dependent contributions of FXII and FXI to venous thrombosis in mice. J Thromb Haemost. 2020;18(11):2899-909.
CrossRef
PubMed PubMedCentral
- Salomon O, Steinberg DM, Zucker M, Varon D, Zivelin A, Seligsohn U. Patients with severe factor XI deficiency have a reduced incidence of deep-vein thrombosis. Thromb Haemost. 2011;105(2):269-73.
CrossRef
PubMed
- Kool RO, Kohler HP, Coutinho JM, Levi M, Coppens M, Meijers JCM, Schroeder V. Coagulation factor XIII-A subunit and activation peptide levels in individuals with established symptomatic acute deep vein thrombosis. Thromb Res. 2017;159:96-9.
CrossRef
PubMed
- Walton BL, Byrnes JR, Wolberg AS. Fibrinogen, red blood cells, and factor XIII in venous thrombosis. J Thromb Haemost. 2015;13 Suppl 1:S208-15.
CrossRef
PubMed PubMedCentral
- Subramaniam S, Jurk K, Hobohm L, Jäckel S, Saffarzadeh M, Schwierczek K, Wenzel P, Langer F, Reinhardt C, Ruf W. Distinct contributions of complement factors to platelet activation and fibrin formation in venous thrombus development. Blood. 2017;129(16):2291-302.
CrossRef
PubMed PubMedCentral
- Foley JH, Walton BL, Aleman MM, O'Byrne AM, Lei V, Harrasser M, Foley KA, Wolberg AS, Conway EM. Complement activation in arterial and venous thrombosis is mediated by plasmin. EBioMed . 2016;5:175-82.
CrossRef
PubMed PubMedCentral
|
|
|
|
|
|
|