Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2023; 69(6): 133-144


PATHOPHYSIOLOGICAL MECHANISMS OF DEEP VEIN THROMBOSIS

S. Chooklin, S. Chuklin

    Saint Paraskeva Medical Center, Lviv, Ukraine
DOI: https://doi.org/10.15407/fz69.06.133


Abstract

Deep venous thrombosis is a frequent multifactorial disease and most of the time is triggered by the interaction between acquired risk factors, particularly immobility, and hereditary risk factors such as thrombophilias. The mechanisms underlying deep venous thrombosis are not fully elucidated; however, in recent years the role of venous flow, endothelium, platelets, leukocytes, and the interaction between inflammation and hemostasis has been determined. Alteration of venous blood flow produces endothelial activation, favoring the adhesion of platelets and leukocytes, which, through tissue factor expression and neutrophil extracellular traps formation, contribute to the activation of coagulation, trapping more cells, such as red blood cells, monocytes, eosinophils, lymphocytes. The coagulation factor XI-driven propagation phase of blood coagulation plays a major role in venous thrombus growth, but a minor role in hemostasis. In this work, the main mechanisms involved in the pathophysiology of deep vein thrombosis are described.

Keywords: deep vein thrombosis; blood flow; endothelial dysfunction; blood cells.

References

  1. Raskob GE, Angchaisuksiri P, Blanco AN, Buller H, Gallus A, Hunt BJ, Hylek EM, Kakkar A, Konstantinides SV, McCumber M, Ozaki Y, Wendelboe A, Weitz JI; ISTH Steering Committee for World Thrombosis Day. Thrombosis: a major contributor to global disease burden. Arterioscler Thromb Vascul Biol. 2014; 34(11): 2363-71. CrossRef PubMed
  2. Aird WC. Vascular bed-specific thrombosis. J Thromb Haemost. 2007;5 Suppl 1:283-91. CrossRef PubMed
  3. Lutsey PL, Zakai NA. Epidemiology and prevention of venous thromboembolism. Nat Rev Cardiol. 2023;20(4): 248-62. CrossRef PubMed PubMedCentral
  4. Jaffray J, Young G. Deep vein thrombosis in pediatric patients. Pediatr Blood Cancer. 2018;65(3):e26881. CrossRef PubMed
  5. Koupenova M, Kehrel BE, Corkrey HA, Freedman JE. Thrombosis and platelets: an update. Eur Heart J. 2017;38(11):785-91. CrossRef PubMed
  6. Kanthi Y, Piazza G. Great debates in vascular medicine: extended duration anticoagulation for unprovoked venous thromboembolism - coming to consensus when the debate rages on. Vascul Med. 2018;23(4):384-7. CrossRef PubMed
  7. Colling ME, Tourdot BE, Kanthi Y. Inflammation, infection and venous thromboembolism. Circ Res. 2021;128(12):2017-36. CrossRef PubMed PubMedCentral
  8. Preston RJS, O'Sullivan JM, O'Donnell JS. Advances in understanding the molecular mechanisms of venous thrombosis. Br J Haematol. 2019;186(1):13-23. CrossRef PubMed
  9. Zuo Y, Kanthi Y, Knight JS, Kim AHJ. The interplay between neutrophils, complement, and microthrombi in COVID-19. Best Pract Res Clin Rheumatol. 2021; 35:101661. CrossRef PubMed PubMedCentral
  10. Navarrete S, Solar C, Tapia R, Pereira J, Fuentes E, Palomo I. Pathophysiology of deep vein thrombosis. Clin Exp Med. 2023;23(3):645-54. CrossRef PubMed
  11. Mereweather LJ, Constantinescu-Bercu A, Crawley JTB, Salles-Crawley II. Platelet-Neutrophil Crosstalk in Thrombosis. Int J Mol Sci. 2023;24(2):1266. CrossRef PubMed PubMedCentral
  12. Sang Y, Roest M, de Laat B, de Groot PG, Huskens D. Interplay between platelets and coagulation. Blood Rev. 2021;46:100733. CrossRef PubMed PubMedCentral
  13. Delluc A, Lacut K, Rodger MA. Arterial and venous thrombosis: What's the link? A narrative review. Thromb Res. 2020;191:97-102. CrossRef PubMed
  14. Prandoni, P. Venous and arterial thrombosis: Two aspects of the same disease? Eur J Int Med. 2009, 20, 660-1 CrossRef PubMed
  15. Carminita E, Crescence L, Brouilly N, Altié A, PanicotDubois L, Dubois C. DNAse-dependent, NET-independent pathway of thrombus formation in vivo. Proc Natl Acad Sci USA. 2021;118(28):e2100561118. CrossRef PubMed PubMedCentral
  16. Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD Jr, Wrobleski SK, Wakefield TW, Hartwig JH, Wagner DD. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA. 2010;107(36):15880-5. CrossRef PubMed PubMedCentral
  17. von Brühl ML, Stark K, Steinhart A, Chandraratne S, Konrad I, Lorenz M, Khandoga A, Tirniceriu A, Coletti R, Köllnberger M, Byrne RA, Laitinen I, Walch A, Brill A, Pfeiler S, Manukyan D, Braun S, Lange P, Riegger J, Ware J, Eckart A, Haidari S, Rudelius M, Schulz C, Echtler K, Brinkmann V, Schwaiger M, Preissner KT, Wagner DD, Mackman N, Engelmann B, Massberg S. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209(4):819-35. CrossRef PubMed PubMedCentral
  18. Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev. 2011;91(1):327-87. CrossRef PubMed PubMedCentral
  19. Welsh JD, Hoofnagle MH, Bamezai S, Oxendine M, Lim L, Hall JD, Yang J, Schultz S, Engel JD, Kume T, Oliver G, Jimenez JM, Kahn ML. Hemodynamic regulation of perivalvular endothelial gene expression prevents deep venous thrombosis. J Clin Invest. 2019;129(12):5489-500. CrossRef PubMed PubMedCentral
  20. Schofield Z, Baksamawi HA, Campos J, Alexiadis A, Nash GB, Brill A, Vigolo D. The role of valve stiffness in the insurgence of deep vein thrombosis. Commun Mater. 2020;1(1):65. CrossRef PubMed PubMedCentral
  21. Lurie F, Kistner RL, Eklof B, Kessler D. Mechanism of venous valve closure and role of the valve in circulation: a new concept. J Vascul Surg. 2003;38(5):955-61. CrossRef PubMed
  22. Shen L, Zhou K, Liu H, Yang J, Huang S, Yu F, Huang D. Prediction of mechanosensitive genes in vascular endothelial cells under high wall shear stress. Front Genet. 2022;12:796812. CrossRef PubMed PubMedCentral
  23. Dormer KJ, Gkotsoulias E. The role of hemodynamic shear stress in healing chronic wounds. Wounds. 2022;34(11):254-62. CrossRef PubMed
  24. Methe H, Balcells M, Alegret Mdel C, Santacana M, Molins B, Hamik A, Jain MK, Edelman ER. Vascular bed origin dictates flow pattern regulation of endothelial adhesion molecule expression. Am J Physiol Heart Circ Physiol. 2007;292(5):H2167-75. CrossRef PubMed
  25. Han Z, Liu Q, Li H, Zhang M, You L, Lin Y, Wang K, Gou Q, Wang Z, Zhou S, Cai Y, Yuan L, Chen H. The role of monocytes in thrombotic diseases: a review. Front Cardiovascul Med. 2023;10:1113827. CrossRef PubMed PubMedCentral
  26. Raffetto JD, Mannello F. Pathophysiology of chronic venous disease. Int Angiol. 2014;33(3):212-21.
  27. Santler B, Goerge T. Chronic venous insufficiency - a review of pathophysiology, diagnosis, and treatment. J Dtsch Dermatol Ges. 2017;15(5):538-56. CrossRef
  28. Gupta N, Sahu A, Prabhakar A, Chatterjee T, Tyagi T, Kumari B, Khan N, Nair V, Bajaj N, Sharma M, Ashraf MZ. Activation of NLRP3 inflammasome complex potentiates venous thrombosis in response to hypoxia. Proc Natl Acad Sci USA. 2017;114(18):4763-8. CrossRef PubMed PubMedCentral
  29. Liang X, Arullampalam P, Yang Z, Ming XF. Hypoxia enhances endothelial intercellular adhesion molecule 1 protein level through upregulation of arginase type ii and mitochondrial oxidative stress. Front Physiol. 2019;10:1003. CrossRef PubMed PubMedCentral
  30. Pak O, Nolte A, Knoepp F, Giordano L, Pecina P, Hüttemann M, Grossman LI, Weissmann N, Sommer N. Mitochondrial oxygen sensing of acute hypoxia in specialized cells - Is there a unifying mechanism? Biochim Biophys Acta Bioenerg. 2022;1863(8):148911. CrossRef PubMed
  31. Xie Y, Li Y, Chen J, Ding H, Zhang X. Early growth response-1: Key mediators of cell death and novel targets for cardiovascular disease therapy. Front Cardiovascul Med. 2023;10:1162662. CrossRef PubMed PubMedCentral
  32. Bovill EG, van der Vliet A. Venous valvular stasis-associated hypoxia and thrombosis: What is the link? Annu Rev Physiol. 2011;73:527-45. CrossRef PubMed
  33. Huang X, Li Y, Li X, Fan D, Xin HB, Fu M. TRIM14 promotes endothelial activation via activating NF-κB signaling pathway. J Mol Cell Biol. 2020;12(3):176-89. CrossRef PubMed PubMedCentral
  34. Karthikkeyan G, Nareshkumar RN, Aberami S, Sulochana KN, Vedantham S, Coral K. Hyperglycemia induced early growth response-1 regulates vascular dysfunction in human retinal endothelial cells. Microvascul Res. 2018;117:37-43. CrossRef PubMed
  35. Chelombitko MA, Fedorov AV, Ilyinskaya OP, Zinovkin RA, Chernyak BV. Role of reactive oxygen species in mast cell degranulation. Biochemistry. 2016; 81(12):1564-77. CrossRef PubMed
  36. Ponomaryov T, Payne H, Fabritz L, Wagner DD, Brill A. Mast cells granular contents are crucial for deep vein thrombosis in mice. Circ Res. 2017;121(8):941-50. CrossRef PubMed PubMedCentral
  37. Torres R, de Castellarnau C, Ferrer LL, Puigdemont A, Santamaría LF, de Mora F. Mast cells induce upregulation of P-selectin and intercellular adhesion molecule 1 on carotid endothelial cells in a new in vitro model of mast cell to endothelial cell communication. Immunol Cell Biol. 2002;80(2):170-7. CrossRef PubMed
  38. Lenzi C, Stevens J, Osborn D, Hannah MJ, Bierings R, Carter T. Synaptotagmin 5 regulates Ca2+-dependent Weibel-Palade body exocytosis in human endothelial cells. J Cell Sci. 2019;132(5):jcs221952. CrossRef PubMed PubMedCentral
  39. Kamegashira A, Yanase Y, Takahagi S, Saito R, Uchida K, Kawaguchi T, Ishii K, Tanaka A, Ozawa K, Hide M. Histamine- or vascular endothelial growth factor-induced tissue factor expression and gap formation between vascular endothelial cells are synergistically enhanced by lipopolysaccharide, tumor necrosis factor-α, interleukin (IL)-33 or IL-1β. J Dermatol. 2020;47(11):1293-300. CrossRef PubMed
  40. Neubauer K, Zieger B. Endothelial cells and coagulation. Cell Tissue Res. 2022;387(3):391-8. CrossRef PubMed PubMedCentral
  41. Bochenek ML, Schafer K. Role of endothelial cells in acute and chronic thrombosis. Hamostaseologie. 2019;39(2):128-39. CrossRef PubMed
  42. Bochenek ML, Schutz E, Schafer K. Endothelial cell senescence and thrombosis: ageing clots. Thromb Res. 2016;147:36-45. CrossRef PubMed
  43. Li WD, Li XQ. Endothelial progenitor cells accelerate the resolution of deep vein thrombosis. Vascul Pharmacol. 2016;83:10-16. CrossRef PubMed
  44. Lehmann M, Schoeman RM, Krohl PJ, Wallbank AM, Samaniuk JR, Jandrot-Perrus M, Neeves KB. Platelets drive thrombus propagation in a hematocrit and glycoprotein VI-dependent manner in an in vitro venous thrombosis model. Arterioscler Thromb Vasc Biol. 2018;38(5):1052-62. CrossRef PubMed PubMedCentral
  45. Brill A, Fuchs TA, Chauhan AK, Yang JJ, De Meyer SF, Kollnberger M, Wakefield TW, Lammle B, Massberg S, Wagner DD. Von Willebrand factor-mediated platelet adhesion is critical for deep vein thrombosis in mouse models. Blood. 2011;117(4):1400-7. CrossRef PubMed PubMedCentral
  46. Cameron SJ, Mix DS, Ture SK, Schmidt RA, Mohan A, Pariser D, Stoner MC, Shah P, Chen L, Zhang H, Field DJ, Modjeski KL, Toth S, Morrell CN. Hypoxia and ischemia promote a maladaptive platelet phenotype. Arterioscler Thromb Vascul Biol. 2018;38(7):1594-606. CrossRef PubMed PubMedCentral
  47. Tyagi T, Ahmad S, Gupta N, Sahu A, Ahmad Y, Nair V, Chatterjee T, Bajaj N, Sengupta S, Ganju L, Singh SB, Ashraf MZ. Altered expression of platelet proteins and calpain activity mediate hypoxia-induced prothrombotic phenotype. Blood. 2014;123(8):1250-60. CrossRef PubMed
  48. Mammadova-Bach E, Ollivier V, Loyau S, Schaff M, Dumont B, Favier R, Freyburger G, Latger-Cannard V, Nieswandt B, Gachet C, Mangin PH, Jandrot-Perrus M. Platelet glycoprotein VI binds to polymerized fibrin and promotes thrombin generation. Blood. 2015;126(5):683-91. CrossRef PubMed
  49. Swystun LL, Liaw PC. The role of leukocytes in thrombosis. Blood. 2016;128(6):753-62. CrossRef PubMed
  50. Bourguignon A, Tasneem S, Hayward CPM. Update on platelet procoagulant mechanisms in health and in bleeding disorders. Int J Lab Hematol. 2022;44 Suppl 1:89-100. CrossRef PubMed
  51. Reinhardt C, von Brühl ML, Manukyan D, Grahl L, Lorenz M, Altmann B, Dlugai S, Hess S, Konrad I, Orschiedt L, Mackman N, Ruddock L, Massberg S, Engelmann B. Protein disulfide isomerase acts as an injury response signal that enhances fibrin generation via tissue factor activation. J Clin Invest. 2008;118(3):1110-22. CrossRef PubMed PubMedCentral
  52. Longstaff C, Kolev K. Basic mechanisms and regulation of fibrinolysis. J Thromb Haemost. 2015;13 Suppl 1:S98-105. CrossRef PubMed
  53. Savchenko AS, Martinod K, Seidman MA, Wong SL, Borissoff JI, Piazza G, Libby P, Goldhaber SZ, Mitchell RN, Wagner DD. Neutrophil extracellular traps form predominantly during the organizing stage of human venous thromboembolism development. J Thromb Haemost. 2014;12(6):860-70. CrossRef PubMed PubMedCentral
  54. Mangold A, Alias S, Scherz T, Hofbauer T, Jakowitsch J, Panzenbock A, Simon D, Laimer D, Bangert C, Kammerlander A, Mascherbauer J, Winter MP, Distelmaier K, Adlbrecht C, Preissner KT, Lang IM. Coronary neutrophil extracellular trap burden and deoxyribonuclease activity in ST-elevation acute coronary syndrome are predictors of ST-segment resolution and infarct size. Circ Res. 2015;116(7):1182-92. CrossRef PubMed
  55. Chrysanthopoulou A, Mitroulis I, Apostolidou E, Arelaki S, Mikroulis D, Konstantinidis T, Sivridis E, Koffa M, Neutrophil extracellular traps promote differentiation and function of fibroblasts. J Pathol. 2014;233(3):294-307. CrossRef PubMed
  56. Shi C, Yang L, Braun A, Anders HJ. Extracellular DNAA danger signal triggering immunothrombosis. Front Immunol. 2020;11:568513. CrossRef PubMed PubMedCentral
  57. Folco EJ, Mawson TL, Vromman A, Bernardes-Souza B, Franck G, Persson O, Nakamura M, Newton G, Luscinskas FW, Libby P. Neutrophil extracellular traps induce endothelial cell activation and tissue factor production through interleukin-1alpha and cathepsin G. Arterioscler Thromb Vascul Biol. 2018;38(8):1901-12. CrossRef PubMed PubMedCentral
  58. Zhang Y, Cui J, Zhang G, Wu C, Abdel-Latif A, Smyth SS, Shiroishi T, Mackman N, Wei Y, Tao M, Li Z. Inflammasome activation promotes venous thrombosis through pyroptosis. Blood Adv. 2021;5(12):2619-23. CrossRef PubMed PubMedCentral
  59. Campos J, Ponomaryov T, De Prendergast A, Whitworth K, Smith CW, Khan AO, Kavanagh D, Brill A. Neutrophil extracellular traps and inflammasomes cooperatively promote venous thrombosis in mice. Blood Adv. 2021;5(9):2319-24. CrossRef PubMed PubMedCentral
  60. Kannemeier C, Shibamiya A, Nakazawa F, Trusheim H, Ruppert C, Markart P, Song Y, Tzima E, Kennerknecht E, Niepmann M, von Bruehl ML, Sedding D, Massberg S, Günther A, Engelmann B, Preissner KT. Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Proc Natl Acad Sci USA. 2007;104(15):6388-93. CrossRef PubMed PubMedCentral
  61. Shahneh F, Christian Probst H, Wiesmann SC, AGonzalez N, Ruf W, Steinbrink K, Raker VK, Becker C. Inflammatory monocyte counts determine venous blood clot formation and resolution. Arterioscler Thromb Vascul Biol. 2022;42(2):145-55. CrossRef PubMed
  62. Lipets EN, Antonova OA, Shustova ON, Losenkova KV, Mazurov AV, Ataullakhanov FI. Use of Thrombodynamics for revealing the participation of platelet, erythrocyte, endothelial, and monocyte microparticlesin coagulation activation and propagation. PLoS One. 2020;15(5):e0227932. CrossRef PubMed PubMedCentral
  63. Semeraro F, Ammollo CT, Semeraro N, Colucci M. Tissue factor-expressing monocytes inhibit fibrinolysis through a TAFI-mediated mechanism, and make clots resistant to heparins. Haematologica. 2009;94(6):819-26. CrossRef PubMed PubMedCentral
  64. Ames PR, Margaglione M, Mackie S, Alves JD. Eosinophilia and thrombophilia in churg strauss syndrome: a clinical and pathogenetic overview. Clin Appl Thromb Hemost. 2010;16(6):628-36. CrossRef PubMed
  65. Uderhardt S, Ackermann JA, Fillep T, Hammond VJ, Willeit J, Santer P, Mayr M, Biburger M, Miller M, Zellner KR, Stark K, Zarbock A, Rossaint J, Schubert I, Mielenz D, Dietel B, Raaz-Schrauder D, Ay C, Gremmel T, Thaler J, Heim C, Herrmann M, Collins PW, Schabbauer G, Mackman N, Voehringer D, Nadler JL, Lee JJ, Massberg S, Rauh M, Kiechl S, Schett G, O'Donnell VB, Krönke G. Enzymatic lipid oxidation by eosinophils propagates coagulation, hemostasis, and thrombotic disease. J Exp Med. 2017;214(7):2121-38. CrossRef PubMed PubMedCentral
  66. Luther N, Shahneh F, Brähler M, Krebs F, Jäckel S, Subramaniam S, Stanger C, Schönfelder T, Kleis-Fischer B, Reinhardt C, Probst HC, Wenzel P, Schäfer K, Becker C. Innate Effector-Memory T-Cell activation regulates post-thrombotic vein wall inflammation and thrombus resolution. Circ Res. 2016;119(12):1286-95. CrossRef PubMed
  67. Schönfelder T, Brandt M, Kossmann S, Knopp T, Münzel T, Walter U, Karbach SH, Wenzel P. Lack of T-bet reduces monocytic interleukin-12 formation and accelerates thrombus resolution in deep vein thrombosis. Sci Rep. 2018;8(1):3013. CrossRef PubMed PubMedCentral
  68. Shahneh F, Grill A, Klein M, Frauhammer F, Bopp T, Schäfer K, Raker VK, Becker C. Specialized regulatory T cells control venous blood clot resolution through SPARC. Blood. 2021;137(11):1517-26. CrossRef PubMed
  69. Lassila R, Weisel JW.Role of red blood cells in clinically relevant bleeding tendencies and complications. J Thromb Haemost. 2023 May 18:S1538-7836(23)00422-1.
  70. Goel MS, Diamond SL. Adhesion of normal erythrocytes at depressed venous shear rates to activated neutrophils, activated platelets, and fibrin polymerized from plasma. Blood. 2002;100(10):3797-803. CrossRef PubMed
  71. Whelihan MF, Lim MY, Mooberry MJ, Piegore MG, Ilich A, Wogu A, Cai J, Monroe DM, Ataga KI, Mann KG, Key NS. Thrombin generation and cell-dependent hypercoagulability in sickle cell disease. J Thromb Haemost. 2016;14(10):1941-52. CrossRef PubMed
  72. Brill A, Fuchs TA, Savchenko AS, Thomas GM, Martinod K, De Meyer SF, Bhandari AA, Wagner DD. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost. 2012;10(1):136-44. CrossRef PubMed PubMedCentral
  73. Kattula S, Byrnes JR, Martin SM, Holle LA, Cooley BC, Flick MJ, Wolberg AS. Factor XIII in plasma, but not in platelets, mediates red blood cell retention in clots and venous thrombus size in mice. Blood Adv. 2018;2(1):25-35. CrossRef PubMed PubMedCentral
  74. Byrnes JR, Duval C, Wang Y, Hansen CE, Ahn B, Mooberry MJ, Clark MA, Johnsen JM, Lord ST, Lam WA, Meijers JC, Ni H, Ariëns RA, Wolberg AS. Factor XIIIa-dependent retention of red blood cells in clots is mediated by fibrin α-chain crosslinking. Blood. 2015;126(16):1940-8. CrossRef PubMed PubMedCentral
  75. Bosh A, Uleryk E, Avila L. Role of factor VIII, IX, and XI in venous thrombosis recurrence risk in adults and children: A systematic review. Res Pract Thromb Haemost. 2023;7(2):100064. CrossRef PubMed PubMedCentral
  76. Sugita C, Yamashita A, Moriguchi-Goto S, Furukoji E, Takahashi M, Harada A, Soeda T, Kitazawa T, Hattori K, Tamura S, Asada Y. Factor VIII contributes to plateletfibrin thrombus formation via thrombin generation under low shear conditions. Thromb Res. 2009;124:601-7. CrossRef PubMed
  77. Sugita C, Yamashita A, Matsuura Y, Iwakiri T, Okuyama N, Matsuda S, et al. Elevated plasma factor VIII enhances venous thrombus formation in rabbits: contribution of factor XI, von Willebrand factor and tissue factor. Thromb Res. 2009;124(5):601-7. CrossRef PubMed
  78. Grover SP, Olson TM, Cooley BC, Mackman N. Model-dependent contributions of FXII and FXI to venous thrombosis in mice. J Thromb Haemost. 2020;18(11):2899-909. CrossRef PubMed PubMedCentral
  79. Salomon O, Steinberg DM, Zucker M, Varon D, Zivelin A, Seligsohn U. Patients with severe factor XI deficiency have a reduced incidence of deep-vein thrombosis. Thromb Haemost. 2011;105(2):269-73. CrossRef PubMed
  80. Kool RO, Kohler HP, Coutinho JM, Levi M, Coppens M, Meijers JCM, Schroeder V. Coagulation factor XIII-A subunit and activation peptide levels in individuals with established symptomatic acute deep vein thrombosis. Thromb Res. 2017;159:96-9. CrossRef PubMed
  81. Walton BL, Byrnes JR, Wolberg AS. Fibrinogen, red blood cells, and factor XIII in venous thrombosis. J Thromb Haemost. 2015;13 Suppl 1:S208-15. CrossRef PubMed PubMedCentral
  82. Subramaniam S, Jurk K, Hobohm L, Jäckel S, Saffarzadeh M, Schwierczek K, Wenzel P, Langer F, Reinhardt C, Ruf W. Distinct contributions of complement factors to platelet activation and fibrin formation in venous thrombus development. Blood. 2017;129(16):2291-302. CrossRef PubMed PubMedCentral
  83. Foley JH, Walton BL, Aleman MM, O'Byrne AM, Lei V, Harrasser M, Foley KA, Wolberg AS, Conway EM. Complement activation in arterial and venous thrombosis is mediated by plasmin. EBioMed . 2016;5:175-82. CrossRef PubMed PubMedCentral

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2025.