Benzodiazepinе derivative methanindiazenone modulates lipid metabolism in the liver of rats with rotenone-induced Parkinson’s syndrome
L.Ya. Shtanova1, S.P. Vesеlsky1, P.I. Yanchuk1, O.V. Tsymbalyuk1, O.F. Moroz1, E.M. Reshetnik1, V.S. Moskvina1, O.V. Shablykina1, О.V. Kravchenko2, V.P. Khilya1
- Taras Shevchenko National University of Kyiv, Ukraine
- O.O. Bogomolets National Medical University, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz69.06.077
Abstract
Parkinson’s disease (PD) is a neurodegenerative condition for which the exact causes remain elusive,
and no effective treatments currently exist. The pathogenesis of PD is believed to involve oxidative stress,
mitochondrial dysfunction, and lipid metabolism disorders. A benzodiazepine derivative JM-20 has demonstrated protective effects on mitochondria in both neurons and peripheral tissues of rats with rotenoneinduced Parkinson’s syndrome (PS). This study aimed to analyze bile composition and assess the impact
of a new benzodiazepine derivative, methanindiazenone, on lipid metabolism in the liver of rats subjected
to the rotenone model of PS. The results indicated that, compared to the control group, bile concentration of phospholipids, cholesterol, cholesterol esters, and triglycerides decreased by 24.3, 26.2, 25.8, and
27.5%, respectively. With methanindiazenone treatment at doses of 0.5 and 1.0 mg/kg, all these metrics
reverted to the control level. However, in the rotenone+methanindiazenone 2.0 mg/kg group, the levels of
phospholipids, cholesterol, and cholesterol esters (except for triglycerides) surpassed the control values
by 33, 28.1, 28.4 and 33.5%, respectively. Methanindiazenone positively impacted the motor behavior of
rats with the rotenone model of PS and enhanced their survival rates. Therefore, at doses of 0.5 and 1.0
mg/kg, methanindiazenone not only improved lipid metabolism in the liver but also the overall well-being
of rats with the rotenone model of PS. However, a 2 mg/kg dose of methanindiazenone displayed toxic effects, as seen from the increased content of phospholipids, cholesterol, and cholesterol esters in bile. Hence,
methanindiazenone holds potential as a therapeutic agent for PS and possibly other neurodegenerative
diseases related to lipid metabolism impairment, but its use should be limited to doses of 0.5 and 1.0 mg/kg.
Keywords:
Parkinson’s syndrome; rotenone model; methanindiazenone; liver; bile; lipids.
References
- Luo Z, Ahlers-Dannen KE, Spicer MM, Yang J, Alberico S, Stevens HE, Narayanan NS, Fisher RA. Age-dependent nigral dopaminergic neurodegeneration and α-synuclein accumulation in RGS6-deficient mice. JCI Insight. 2019;23;5(13):e126769.
CrossRef
PubMed PubMedCentral
- Khot M, Sood A, Tryphena KP, Khan S, Srivastava S, Singh SB, Khatri DK. NLRP3 inflammasomes: A potential target to improve mitochondrial biogenesis in Parkinson's disease. Eur J Pharm. 2022; 934(5):175300.
CrossRef
PubMed
- Franke C, Storch A. Nonmotor fluctuations in Parkinson's disease. Int Rev Neurobiol. 2017;134:947-71.
CrossRef
PubMed
- Rocca WA. The burden of Parkinson's disease: a worldwide perspective. Lancet Neurol. 2018;17(11):928-9.
CrossRef
PubMed
- Costa HN, Esteves AR, Empadinhas N, Cardoso SM. Parkinson's disease: A multisystem disorder. Neurosci Bull. 2023;39(1):113-24.
CrossRef
PubMed
- Ibarra-Gutiérrez MT, Serrano-García N, Orozco-Ibarra M. Rotenone-induced model of parkinson's disease: Beyond mitochondrial complex I inhibition. Mol Neurobiol. 2023;60:1929-48.
CrossRef
PubMed
- Fox SH, Katzenschlager R, Lim SY, Barton B, de Bie RMA, Seppi K, et al. International Parkinson and movement disorder society evidence-based medicine review: Update on treatments for the motor symptoms of Parkinson's disease. Mov Disord.2018;33:1248-66.
CrossRef
PubMed
- Hayder M. Al‐kuraishy,Ali I. Al‐Gareeb,Athanasios Alexiou,Marios Papadakis, Abdulrahman A. Alsayegh,Najlaa Hamed Almohmadi, Hebatallah M. Saad, and Gaber El‐Saber Batiha. Pros and cons for statins use and risk of Parkinson's disease: An updated perspective. Pharmacol Res Perspect. 2023;11(2):e01063.
CrossRef
PubMed PubMedCentral
- Rajib Paul, Amarendranath Choudhury, Sanjeev Kumar, Anirudha Giri, Rajat Sandhir, Anupom Borah. Cholesterol contributes to dopamineneuronal loss in MPTP mouse model of Parkinson's disease: Involvement of mitochondrial dysfunctions and oxidative stress. PLoS One. 2017;7;12(2):e0171285.
CrossRef
PubMed PubMedCentral
- Balestrino R, Schapira AHV. Parkinson disease. Eur J Neurol. 2020;27:27-42.
CrossRef
PubMed
- Hadi F, Agah E, Tavanbakhsh S, Mirsepassi Z, Vahid Mousavi S, Talachi N, Tafakhori A, Aghamollaii V. Safety and efficacy of melatonin, clonazepam, and trazodone in patients with Parkinson's disease and sleep disorders: a randomized, double-blind trial. Neurol Sci. 2022;43(10):6141-8.
CrossRef
PubMed
- Fonseca-Fonseca L, Wong-Guerra M, Ramírez-Sánchez J, Montano-Peguero Y, Padrón Yaquis A, Rodríguez A, da Silva V, Costa S, Pardo-Andreu Y. JM-20, a novel hybrid molecule, protects against rotenone-induced neurotoxicity in experimental model of Parkinson's disease. Neurosci Lett. 2019b;690:29-35.
CrossRef
PubMed
- Shtanova L, Yanchuk P, Veselsky S, Tsymbalyuk O, Vovkun T, Moskvina V, Shablykina O, Bogza S, Baban V, Kravchenko A, Khily V. Diazepinone effect on liver tissue respiration and serum lipid content in rats with a rotenone model of Parkinson's disease. Ukr Biochem J. 2020;92(6):85-94.
CrossRef
- Shablykina O, Krekhova O, Konovalenko A, Moskvina V, Khilya V. Interaction of 3-pyridyl and 3-(imidazo[1,2-a] pyridin-2-yl) isocoumarins with hydrazine. Dop Natl Akad Nauk Ukr. 2018;(12):71-8.
CrossRef
- Zeng X, Geng W, Jia J. Neurotoxin induced animal models of Parkinson disease: Pathogenic mechanism and assessment. ASN Neuro. 2018;10:1759091418777438.
CrossRef
PubMed PubMedCentral
- Chang YT, Luo XG, Ren Y. Behavior alteration and damage of dopaminergic neurons of substantia nigra caused by rotenone in rats. Jiepouxue Yanjiu Jingzhan. 2011;7:60-62.
- Bures J, Burešová O, Huston JP. Techniques and basic experiments for the study of brain and behavior. Elsevier. 1976. 247.
- Moroz OF, Veselskiy SP, Lyashchenko TP, Nuryshchenko NE. Changes of lipid components ratio in the rat bile after applying bombesin neuropeptide. Ukr Biochem J. 2009;81:52-8.
- Shtanova L, Yanchuk P, Veselsky S, Tsymbalyuk O, Vovkun T, Moskvina V, Shablykina O, Bogza S, Baban V, Kravchenko A, Khily V. Purine and lipid metabolism in rats with a rotenone model of Parkinson's disease under the influence of methanindiazenone. Fiziol Zh. 2022;68(6):18-30.
CrossRef
- Helen H Wang, Piero Portincasa, Min Liu, David Q-H Wang. Effects of biliary phospholipids on cholesterol crystallization and growth in gallstone formation. Adv Ther. 2023;40(3):743-68.
CrossRef
PubMed
- Shin-Ya Morita, Yoshito Ikeda, Tokuji Tsuji, Tomohiro Terada. Molecular mechanisms for protection of hepatocytes against bile salt cytotoxicity. Chem Pharm Bull. 2019;67(4):333-40.
CrossRef
PubMed
- Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest. 2005;115:1343-51.
CrossRef
PubMed PubMedCentral
- Bichitra P, Lewinska M, Andersen J B. Lipid alterations in chronic liver disease and liver cancer. JHEP Rep. 2022;4(6):100479.
CrossRef
PubMed PubMedCentral
- Shtanova LYa, Veselsky SP, Yanchuk PI, Tsymbalyuk OV, Moskvina VS, Shablykina OV, Moroz OF, Vovkun TV, Kravchenko OV, Khilya VP. Purine and lipid metabolism in rats with a rotenone model of Parkinson's disease under the influence of methanindiazenone. Fiziol Zh. 2022;68(6):18-30.
CrossRef
- Fang F, Zhan Y, Hammar N, Shen X, Wirdefeldt K, Walldius G, Mariosa D. Lipids, Apolipoproteins and the risk of Parkinson's disease. Circ Res. 2019;125(6):643-52.
CrossRef
PubMed
- Cucuianu M, Coca M, Hâncu M. Reverse cholesterol transport and atherosclerosis. A mini review. Rom J Int Med. 2007;45(1):17-27.
- Maki T, Sonoda Y, Sugita K. Gallstone and Parkinson's disease-ultrasound echography study. Rinsho Shinkeigaku. 1990;30(7):728-30.
- Garcia-Sanz P, Aerts J, Moratalla R. The role of cholesterol in α-synuclein and Lewy body pathology in GBA1 Parkinson's disease. Movement Dis. 2021;36 (5):1070-85.
CrossRef
PubMed PubMedCentral
- Heikkila RE, Nicklas W J, Vyas I, Duvoisin S. Dopaminergic toxicity of rotenone and the 1-methyl-4-phenylpyridinium ion after their stereotaxic administration to rats: implication for the mechanism of 1-methyl4-phenyl-1,2,3,6-tetrahydropyridine toxicity. Neurosci Lett. 1985;62(3):389-94.
CrossRef
PubMed
- Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, PanovAV, Greenamyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci. 2000;3(12):1301-6.
CrossRef
PubMed
- Higgins DS, Jr, Greenamyre JT. [3H]dihydrorotenone binding to NADH: ubiquinone reductase (complex I) of the electron transport chain: an autoradiographic study. J Neurosci. 1996;16(12):3807-16.
CrossRef
PubMed PubMedCentral
- Palmer G, Horgan D, Tisdale H, Singer T, Beinert H. Studies on the respiratory chain-linked reduced nicotinamide adenine dinucleotide dehydrogenase. XIV. Location of the sites of inhibition of rotenone, barbiturates, and piericidin by means of electron paramagnetic resonance spectroscopy. J Biol Chem. 1968;243(4):844-7.
CrossRef
PubMed
- Ana Ortíz de Zárate, Marta Pérez-Torralba, Iñigo Bonet Isidro, Concepción López, Rosa M Claramunt, Diana Martínez-Casanova, Isabel Sánchez-Vera, Jesús JiménezGonzález and José Luis Lavandera. 1,5-Benzodiazepin2(3H)-ones: In vitro evaluation as antiparkinsonian agents. Antioxidants. 2021;10,1584.
CrossRef
PubMed PubMedCentral
|