Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2023; 69(5): 22-32


THE INFLUENCE OF TYROSINE PROTEIN KINASES BLOCKADE ON THE VASCULONEDOTHELIAL GROWTH FACTOR EXPRESSION AND DIABETIC RETINOPATHY DEVELOPMENT

S.V. Ziablitsev1, V.V. Vodianyk1, O.O. Dyadyk2

  1. Bogomolets National Medical University, Kyiv, Ukraine
  2. Shupyk National University Healthcare of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz69.05.022


Abstract

One of the main factors in the development of diabetic retinopathy (DR) is vasculoendothelial growth factor (VEGF), which is the end product of the activation of several intracellular signaling pathways, including those triggered by the activation of receptor tyrosine protein kinases. There is a need to justify new approaches to influence the expression of VEGF, not only in the late but also in the early stages of DR. Diabetes was modeled in 45 three-month-old male Wistar rats by a single injection of streptozotocin (50 mg/kg; Sigma- Aldrich, China). Hyperglycemia led to the development of early (on the 7–28th day) morphological manifestations of DR, indicating pronounced degenerative changes in nerve cells, microcirculation, and metabolism disorders. The use of insulin resulted in fewer diabetic changes in the retina, while the combined use of insulin and the tyrosine protein kinase blocker imatinib prevented the morphological manifestations of DR. According to the results of an immunohistochemical study, overexpression of VEGF was observed in the retinal tissue, which was inhibited by the introduction of insulin and, to a greater extent, by the combination of insulin with imatinib. According to immunoblotting results, the levels of VEGF and hypoxia-inducible factor (HIF-1) in the retinal tissue increased several-fold, which was significantly inhibited by insulin and prevented by insulin in combination with imatinib. Thus, this suggests that blockade of tyrosine protein kinases may be a highly effective way of preventing or correcting the damage caused by DR.

Keywords: diabetic retinopathy; immunohistochemistry; im- munoblotting; streptozotocin; imatinib

References

  1. Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, Cavan D, Shaw JE, Makaroff LE. IDF diabetes atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017 Jun;128:40-50. CrossRef PubMed
  2. Wong TY, Sabanayagam C. Strategies to tackle the global burden of diabetic retinopathy: From epidemiology to artificial intelligence. Ophthalmologica. 2020;243(1):9-20. CrossRef PubMed
  3. Thomas RL, Halim S, Gurudas S, Sivaprasad S, Owens DR. IDF Diabetes Atlas: A review of studies utilising retinal photography on the global prevalence of diabetes related retinopathy between 2015 and 2018. Diabetes Res Clin Pract. 2019 Nov;157:107840. CrossRef PubMed
  4. Antonetti DA, Silva PS, Stitt AW. Current understanding of the molecular and cellular pathology of diabetic retinopathy. Nat Rev Endocrinol. 2021 Apr;17(4): 195-206. CrossRef PubMed PubMedCentral
  5. Mykheitseva IM, Molchaniuk NI, Abdulhadi Muhammad, Kolomiichuk SG, Suprun OO. Ultrastructural changes in the chorioretinal complex of the rat after inducing formdeprivation axial myopia only, diabetic retinopathy only and diabetic retinopathy in the presence of myopia. J Ophthalmol (Ukraine). 2021;4:72-8. CrossRef
  6. Maturi RK, Glassman AR, Josic K, Antoszyk AN, Blodi BA, Jampol LM, et al. DRCR retina network. Effect of intravitreous anti-vascular endothelial growth factor vs sham treatment for prevention of vision-threatening complications of diabetic retinopathy: The Protocol W Randomized Clinical Trial. JAMA Ophthalmol. 2021 Jul 1;139(7):701-12. CrossRef PubMed PubMedCentral
  7. Podkowinski D, Orlowski-Wimmer E, Zlabinger G, Pollreisz A, Mursch-Edlmayr AS, Mariacher S, Ring M, Bolz M. Aqueous humour cytokine changes during a loading phase of intravitreal ranibizumab or dexamethasone implant in diabetic macular oedema. Acta Ophthalmol. 2020 Jun;98(4):e407-e415. CrossRef PubMedCentral
  8. Mehrabadi ME, Salemi Z, Babaie S, Panahi M. Effect of Biochanin A on retina levels of vascular endothelial growth factor, tumor necrosis factor-alpha and interleukin 1beta in rats with streptozotocin-induced diabetes. Can J Diabet. 2018 Dec;42(6):639-44. CrossRef PubMed
  9. Yenihayat F, Özkan B, Kasap M, Karabaş VL, Güzel N, Akpınar G, Pirhan D. Vitreous IL-8 and VEGF levels in diabetic macular edema with or without subretinal fluid. Int Ophthalmol. 2019 Apr;39(4):821-8. CrossRef PubMed
  10. Wang W, Lo ACY. Diabetic retinopathy: Pathophysiology and treatments. Int J Mol Sci. 2018 Jun 20;19(6):1816. CrossRef PubMed PubMedCentral
  11. Huang H, He J, Johnson D, Wei Y, Liu Y, Wang S, Lutty GA, Duh EJ, Semba RD. Deletion of placental growth factor prevents diabetic retinopathy and is associated with Akt activation and HIF1α-VEGF pathway inhibition. Diabetes. 2015 Jan;64(1):200-12. CrossRef PubMed PubMedCentral
  12. Gavi S, Shumay E, Wang N, Malbon S. G-proteincoupled receptors and tyrosine kinases: crossroads in cell signaling and regulation. Trends Endocrinol Metab. 2006;17(2): 46-52. CrossRef PubMed
  13. Maruyama IN. Mechanisms of activation of receptor tyrosine kinases: monomers or dimers. Cells. 2014 Apr 22;3(2):304-30. CrossRef PubMed PubMedCentral
  14. Siddle K. Molecular basis of signaling specificity of insulin and IGF receptors: neglected corners and recent advances. Front Endocrinol (Lausanne). 2012 Feb 28;3:34. CrossRef PubMed PubMedCentral
  15. Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010 Jun 25;141(7):1117-34. CrossRef PubMed PubMedCentral
  16. Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocrin Rev. 2001; 22(2):153-83. CrossRef PubMed
  17. Liu Y, Chen J, Liang H, Cai Y, Li X, Yan L, Zhou L, Shan L, Wang H. Human umbilical cord-derived mesenchymal stem cells not only ameliorate blood glucose but also protect vascular endothelium from diabetic damage through a paracrine mechanism mediated by MAPK/ERK signaling. Stem Cell Res Ther. 2022 Jun 17;13(1):258. CrossRef PubMed PubMedCentral
  18. Guo Y, Guo C, Ha W, Ding Z. Carnosine improves diabetic retinopathy via the MAPK/ERK pathway. Exp Ther Med. 2019 Apr;17(4):2641-7. CrossRef
  19. Liu F, Ma Y, Xu Y. Taxifolin shows anticataractogenesis and attenuates diabetic retinopathy in STZ-diabetic rats via suppression of aldose reductase, oxidative stress, and MAPK signaling pathway. Endocr Metab Immun Disord Drug Targets. 2020;20(4):599-608. CrossRef PubMed
  20. Hymowitz SG, Malek S. Targeting the MAPK pathway in RAS mutant cancers. Cold Spring Harb Perspect Med. 2018 Nov 1;8(11):a031492. CrossRef PubMed PubMedCentral
  21. Waller CF. Imatinib Mesylate. Recent Results Cancer Res. 2018;212:1-27. CrossRef PubMed
  22. Al-Awar A, Kupai K, Veszelka M, Szűcs G, Attieh Z, Murlasits Z, et al. Experimental diabetes mellitus in different animal models. J Diabetes Res. 2016;2016:9051426. CrossRef PubMed PubMedCentral
  23. Lenzen S. The mechanisms of alloxan- and streptozotocininduced diabetes. Diabetologia. 2008 Feb;51(2):216-26. CrossRef PubMed
  24. Olivares AM, Althoff K, Chen GF, Wu S, Morrisson MA, DeAngelis MM, Haider N. Animal models of diabetic retinopathy. Curr Diab Rep. 2017 Aug 24;17(10):93. CrossRef PubMed PubMedCentral
  25. Newman EA. Functional hyperemia and mechanisms of neurovascular coupling in the retinal vasculature. J Cerebr Blood Flow Metab. 2013 Nov;33(11):1685-95. CrossRef PubMed PubMedCentral
  26. Arboleda-Velasquez JF, Valdez CN, Marko CK, D'Amore PA. From pathobiology to the targeting of pericytes for the treatment of diabetic retinopathy. Curr Diab Rep. 2015 Feb;15(2):573. CrossRef PubMed PubMedCentral
  27. Ren J, Zhang S, Pan Y, Jin M, Li J, Luo Y, Sun X, Li G. Diabetic retinopathy: Involved cells, biomarkers, and treatments. Front Pharmacol. 2022 Aug 9;13:953691. CrossRef PubMed PubMedCentral
  28. Shukal D, Bhadresha K, Shastri B, Mehta D, Vasavada A, Johar K Sr. Dichloroacetate prevents TGFβ-induced epithelial-mesenchymal transition of retinal pigment epithelial cells. Exp Eye Res. 2020 Aug;197:108072. CrossRef PubMed
  29. Chang KC, Shieh B, Petrash JM. Role of aldose reductase in diabetes-induced retinal microglia activation. Chem Biol Interact. 2019 Apr 1;302:46-52. CrossRef PubMed PubMedCentral
  30. Lechner J, O'Leary OE, Stitt AW. The pathology associated with diabetic retinopathy. Vision Res. 2017 Oct;139:7-14. CrossRef PubMed
  31. Sundstrom JM, Hernández C, Weber SR, Zhao Y, Dunklebarger M, Tiberti N, Laremore T, Simó-Servat O, GarciaRamirez M, Barber AJ, Gardner TW, Simó R. Proteomic analysis of early diabetic retinopathy reveals mediators of neurodegenerative brain diseases. Invest Ophthalmol Vis Sci. 2018 May 1;59(6):2264-74. CrossRef PubMed PubMedCentral
  32. Xu J, Chen LJ, Yu J, Wang HJ, Zhang F, Liu Q, Wu J. Involvement of advanced glycation end products in the pathogenesis of diabetic retinopathy. Cell Physiol Biochem. 2018;48(2):705-17. CrossRef PubMed
  33. Mohammad G, Kowluru RA. Diabetic retinopathy and signaling mechanism for activation of matrix metalloproteinase-9. J Cell Physiol. 2012 Mar;227(3):1052-61. CrossRef PubMed PubMedCentral
  34. Wu C, Xu K, Liu W, Liu A, Liang H, Li Q, Feng Z, Yang Y, Ding J, Zhang T, Liu Y, Liu X, Zuo Z. Protective effect of Raf-1 kinase inhibitory protein on diabetic retinal neurodegeneration through P38-MAPK pathway. Curr Eye Res. 2022 Jan;47(1):135-42. CrossRef PubMed
  35. Ekberg NR, Eliasson S, Li YW, Zheng X, Chatzidionysiou K, Falhammar H, Gu HF, Catrina SB. Protective effect of the HIF-1A Pro582Ser polymorphism on severe diabetic retinopathy. J Diabet Res. 2019 May 12;2019:2936962. CrossRef PubMed PubMedCentral
  36. Kaur C, Sivakumar V, Foulds WS. Early response of neurons and glial cells to hypoxia in the retina. Invest Ophthalmol Vis Sci. 2006 Mar;47(3):1126-41. CrossRef PubMed
  37. Striglia E, Caccioppo A, Castellino N, Reibaldi M, Porta M. Emerging drugs for the treatment of diabetic retinopathy. Expert Opin Emerg Drugs. 2020 Sep;25(3):261-71. CrossRef PubMed
  38. Boneva SK, Wolf J, Hajdú RI, Prinz G, Salié H, Schlecht A, et al. In-depth molecular characterization of neovascular membranes suggests a role for hyalocyte-tomyofibroblast transdifferentiation in proliferative diabetic retinopathy. Front Immunol. 2021 Nov 2;12:757607. CrossRef PubMed PubMedCentral

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.