Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2023; 69(5): 12-21


THE EFFECT OF ACTOVEGYN ON THE MECHANISMS OF OXIDATIVE STRESS DEVELOPING IN PATIENTS WITH TYPE 2 DIABETES MELLITUS AND CARDIOVASCULAR AUTONOMIC NEUROPATHY

Y.A. Saenko1, O.O. Gonchar2, I.M. Mankovska2, T.I. Drevytska2, L.V. Bratus2, B.М. Mankovsky1, 3

  1. Government Institution The Scientific and Practical Medical Center of Pediatric Cardiology and Cardiac Surgery of the Ministry of Health of Ukraine, Kyiv, Ukraine
  2. О.О. Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, Ukraine
  3. Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz69.05.012


Abstract

The effects of actovegin on the mechanisms of oxidative stress (OS) developing in the blood of patients with type 2 diabetes mellitus (DM2) and cardiovascular autonomic neuropathy (CVAN) were investigated. The aim of the study was to establish the effectiveness of treatment with actovegin for the pro- and antioxidant balance impairment and changes in gene expression of HIF-1α and mTOR in the blood of patients with DM2 and CVAN. It was shown that intravenous injections of actovegin at a dose of 1000 mg per day for 10 days and further prolonged oral administration of this drug at a dose of 800 mg per day for 90 days led to a decrease in the content of secondary products of lipid peroxidation in blood plasma and H2O2 production in erythrocytes of patients with DM2 and CVAN. These changes were indicative of a weakening of OS intensity. It was also shown that treatment with actovegin promoted an increase in total plasma SOD activity as well as reduced glutathione and glutathione peroxidase activity in erythrocytes from patients. Treatment with actovegin also raised the gene expression of HIF-1α and reduced the gene expression of mTOR in leukocytes of patients with DM2 and CVAN. These genetic changes may serve as a protective mechanism against the development of OS, which acts through different metabolic pathways. So, actovegin administration counteracting OS development due to the impact on the different components of pro- and antioxidant system as well as on HIF-1α and mTOR genes expression may offer new clinical avenues for pharmacological treatment of patients with DM2 and CVAN.

Keywords: actovegin; oxidative stress; HIF-1α; mTOR; type 2 diabetes mellitus; cardiovascular autonomic neuropathy

References

  1. Vinik AI, Maser RE, Ziegler D. Neuropathy: the crystal ball for cardiovascular disease? Diabetes Care. 2010;33(7):1688-90. CrossRef PubMed PubMedCentral
  2. Mankovsky BM. Diabetic neuropathy: from top to toe. Kiyv: Vira Project. 2021 [Ukrainian].
  3. Pop-Busui R, Evans GW, Gertein HC, et al. Action to control cardiovascular risk in diabetes study group. Effects of cardiac autonomic dysfunction on mortality risk in the action to control cardiovascular risk in diabetes (ACCORD) trial. Diabetes Care. 2010;33:1578-84. CrossRef PubMed PubMedCentral
  4. Tomlinson DR, Gardiner NJ. Glucose neurotoxicity. Nat Rev Neurosci. 2008;9(1):36-45. CrossRef PubMed
  5. Alzoubi KH, Khabour OF, Alhaidar IA, Aleisa AM, Alkadhi KA. Diabetes impairs synaptic plasticity in the superior cervical ganglion: possible role for BDNF and oxidative stress. J Mol Neurosci. 2013;51(3):763-70. CrossRef PubMed
  6. Nastenko AO, Purnyn HE, Veselovsky NS. Physiological functions disorders of the superior cervical ganglion neurons in diabetes mellitus. Fiziol Zh. 2022; 68(1):74-86. CrossRef
  7. Piconi L, Quagliaro L, Ceriello A. Oxidative stress in diabetes. Clin Chem Lab Med. 2003; 41:1144-49. CrossRef PubMed
  8. Moussa SA. Oxidative stress in diabetes mellitus. Roman J Biophys. 2008;18:225-36.
  9. Sivitz WI, Yorek MA. Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal. 2010;12:537-77. CrossRef PubMed PubMedCentral
  10. Kayama Y, Raaz U, Jagger A, Matti A. Diabetic cardiovascular disease induced by oxidative stress. Int J Mol Sci. 2015; 16.10:25234-63. CrossRef PubMed PubMedCentral
  11. Spallone V. Update on the impact, diagnosis and management of cardiovascular autonomic neuropathy in diabetes: what is defined, what is new, and what is unmet. Diabet Metab J. 2019;43(1):3-30. CrossRef PubMed PubMedCentral
  12. Bandeira SM, Guedes GS, Fonseca LJS, Pires AS, Gelain DP, Claudio J, Moreira F, Rabelo LA, Vasconcelos SML, Goulart MOF. Characterization of blood oxidative stress in type 2 diabetes mellitus patients: Increase in lipid peroxidation and SOD activity. Oxid Med Cell Longev (Online). 2012;819310. CrossRef PubMed PubMedCentral
  13. Soliman GZA. Blood lipid peroxidation (superoxide dismutase, malondialdehyde, glutathione) levels in Egyptian type 2 diabetes patients. Singapore J. 2008;49:129136.
  14. Tavares AM, Silva JH, Bensusan OCh, Ferreira ACF, de Lima Matos LP, et al. Altered superoxide dismutase-1 activity and intercellular adhesion molecule 1 (ICAM1) levels in patients with type 2 diabetes mellitus. PLoS ONE. 2019;14(5): 216-56. CrossRef PubMed PubMedCentral
  15. Mendoza-Núñez VM, García-Martínez BI, Rosado-Pérez J, Santiago-Osorio E, Pedraza-Chaverri J, HernándezAbad VJ. The effect of 600 mg alpha-lipoic acid supplementation on oxidative stress, inflammation, and RAGE in older adults with type 2 diabetes mellitus. Oxid Med Cell Long (Online). 2019;3276958. CrossRef PubMed PubMedCentral
  16. Dickinson D, Forman H. Cellular glutathione and thiols metabolism. Biochem Pharmacol. 2002;64:1019-26. CrossRef PubMed
  17. Kolesnichenko T, Bardimova E, Sergeeva M, Sergeeva N, Verlan N, Belouova I. Glutathione antioxidant system in patients with Diabetes Mellitus. J Clin Lipidol. 2008;2(5S):124-5.
  18. Mendez MM, Folgado J, Tormo C, Artero A, Ascaso M, Martinez-Hervás S,et al. Altered glutathione system is associated with the presence of distal symmetric peripheral polyneuropathy in type 2 diabetic subjects. J Diabet Complicat. 2015;29:923-7. CrossRef PubMed
  19. Persson P, Palm F. Hypoxia-inducible factor activation in diabetic kidney disease. Curr Opin Nephrol Hyperten. 2017;26(5):345-50. CrossRef PubMed
  20. Catrina S-B, Zheng X. Hypoxia and hypoxia-inducible factors in diabetes and its complications. Diabetologia. 2021;64:709-16. CrossRef PubMed PubMedCentral
  21. Yasuda-Yamahara M, Kume S, Maegawa H. Roles of mTOR in diabetic kidney disease. Antioxidants. 2021;10:321-35. CrossRef PubMed PubMedCentral
  22. Mao Z, Zhang W. Role of mTOR in glucose and lipid metabolism. Int J Mol Sci. 2018; 19(7):2043-53. CrossRef PubMed PubMedCentral
  23. Maiese K. Novel nervous and multi-system regenerative therapeutic strategies for diabetes mellitus with mTOR. Neural Regen Res.2016; 11(3):372-85. CrossRef PubMed PubMedCentral
  24. Elmlinger MW, Kriebel M, Ziegler D. Neuroprotective and anti-oxidative effects of the hemodialysate actovegin on primary rat neurons in vitro. Neuromolec Med. 2011;13(4):266-74. CrossRef PubMed PubMedCentral
  25. Ziegler D, Edmundson S, Gurieva I, Mankovsky B, et al. Predictors of response to treatment with Actovegin for 6 months in patients with type 2 diabetes and symptomatic polyneuropathy. J Diabet Comlicat. 2017;31(7):1181-7. CrossRef PubMed
  26. Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol. 1978;52:302-10. CrossRef PubMed
  27. Wolff SP. Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods Enzymol. 1994;233:182-9. CrossRef
  28. Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972; 247(10):3170-5. CrossRef
  29. Aebi H. Catalase. In: Methods of Enzymatic Analysis, Ed: Bergmeyer, H.U. Weinheim and Academic Press. 1983:227-82.
  30. Flohé L, Günzler WA. Assays of glutathione peroxidase. Methods Enzymol. 1984;105:114-21. CrossRef PubMed
  31. Sedlak J, Lindsay RH. Estimation of total, protein bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Annal Biochem.1968;25(1): 192-205. CrossRef PubMed
  32. Mankovska IM, Rozova KV, Gonchar OO, Nosar VI, Bratus LV, Drevitska TI, Glazyrin ID, Karasevich NV, Karaban IM. The Influence of capicor on the Parkinson's disease pathogenetic links. Fiziol Zh. 2018;64(1):16-24. CrossRef
  33. Mezzetti A, Cipollone P, Cuccurullo F. Oxidative stress and cardiovascular complications in diabetes: isoprostanes as a new markers on an old paradigm. Cardiovascul Res. 2000;47:475-88. CrossRef PubMed
  34. Buettner R. Superoxide dismutase in redox biology: the roles of superoxide and hydrogen peroxide. Anticancer Agents Med Chem. 2011;11(4): 341-6. CrossRef PubMed PubMedCentral
  35. Saenko Y A, Gonchar OO, Mankovska IM, Drevytska TI, Bratus LV, Mankovsky B. Oxydative stress in type 2 diabetic patients: involvement of HIF-1 alpha and mTOR genes expression. Ukr Biochem J. 2023; 95(2):47-56. CrossRef
  36. Botusan IR, Sunkari VG, Savu O, Catrina AI, Grünler J, Lindberg S, Pereira T, Ylä-Herttuala S, Poellinger L, Brismar K, Catrina S-B. Stabilization of HIF-1alpha is critical to improve wound healing in diabetic mice. Proc Natl Acad Sci USA. 2008;105(49):19426-31. CrossRef PubMed PubMedCentral
  37. Weidemann A, Johnson RS. Biology of HIF-1alpha. Cell Death Differ. 2008;15(4):621-7. CrossRef PubMed
  38. López-Cano C, Gutiérrez-Carrasquilla L, Barbé F, Sánchez E, Hernández M, Martí R, et al. Effect of type 2 diabetes mellitus on the hypoxia-inducible factor 1-alpha expression. Is there a relationship with the clock genes? J Clin Med. 2020;9:2632-42. CrossRef PubMed PubMedCentral
  39. Kumawat M, Pahwa MB, Gahlaut VS, Singh N. Status of antioxidant enzymes and lipid peroxidation in type 2 diabetes mellitus with micro vascular complications. Open Endocrinol J. 2009;3:12-5. CrossRef
  40. Thiemermann C. Membrane-permeable radical scavengers (tempol) for shock, ischemia-reperfusion injury, and inflammation. Crit Care Med. 2003;31:76-84. CrossRef PubMed
  41. Asaba K, Tojo A, Onozato ML, Goto A, Fujita T. Doubleedged action of SOD mimetic in diabetic nephropathy. J Cardiovascul Pharmacol. 2007;49:13-9. CrossRef PubMed
  42. Campanucci V, Krishnaswamy A, Cooper E. Diabetes depresses synaptic transmission in sympathetic ganglia by inactivating nAChRs through a conserved intracellular cysteine residue. Neuron. 2010;66(6):827-34. Material nadiishov do redaktsii 30.06.2023 CrossRef PubMed
  43. Gunton JE. Hypoxia-inducible factors and diabetes. J Clin Invest. 2020;130(10):5063-73. CrossRef PubMed PubMedCentral
  44. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149:274-93. CrossRef PubMed PubMedCentral

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.