THE EFFECT OF ACTOVEGYN ON THE MECHANISMS OF OXIDATIVE STRESS DEVELOPING IN PATIENTS WITH TYPE 2 DIABETES MELLITUS AND CARDIOVASCULAR AUTONOMIC NEUROPATHY
Y.A. Saenko1, O.O. Gonchar2, I.M. Mankovska2, T.I. Drevytska2, L.V. Bratus2, B.М. Mankovsky1, 3
- Government Institution The Scientific and Practical
Medical Center of Pediatric Cardiology and Cardiac
Surgery of the Ministry of Health of Ukraine, Kyiv, Ukraine
- О.О. Bogomoletz Institute of Physiology of National
Academy of Sciences of Ukraine, Kyiv, Ukraine
- Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz69.05.012
Abstract
The effects of actovegin on the mechanisms of oxidative stress
(OS) developing in the blood of patients with type 2 diabetes
mellitus (DM2) and cardiovascular autonomic neuropathy
(CVAN) were investigated. The aim of the study was to establish the effectiveness of treatment with actovegin for the
pro- and antioxidant balance impairment and changes in gene
expression of HIF-1α and mTOR in the blood of patients with
DM2 and CVAN. It was shown that intravenous injections of
actovegin at a dose of 1000 mg per day for 10 days and further
prolonged oral administration of this drug at a dose of 800 mg
per day for 90 days led to a decrease in the content of secondary products of lipid peroxidation in blood plasma and H2O2
production in erythrocytes of patients with DM2 and CVAN.
These changes were indicative of a weakening of OS intensity.
It was also shown that treatment with actovegin promoted
an increase in total plasma SOD activity as well as reduced
glutathione and glutathione peroxidase activity in erythrocytes
from patients. Treatment with actovegin also raised the gene
expression of HIF-1α and reduced the gene expression of
mTOR in leukocytes of patients with DM2 and CVAN. These
genetic changes may serve as a protective mechanism against
the development of OS, which acts through different metabolic
pathways. So, actovegin administration counteracting OS
development due to the impact on the different components
of pro- and antioxidant system as well as on HIF-1α and
mTOR genes expression may offer new clinical avenues for
pharmacological treatment of patients with DM2 and CVAN.
Keywords:
actovegin; oxidative stress; HIF-1α; mTOR; type 2 diabetes mellitus; cardiovascular autonomic neuropathy
References
- Vinik AI, Maser RE, Ziegler D. Neuropathy: the crystal ball for cardiovascular disease? Diabetes Care. 2010;33(7):1688-90.
CrossRef
PubMed PubMedCentral
- Mankovsky BM. Diabetic neuropathy: from top to toe. Kiyv: Vira Project. 2021 [Ukrainian].
- Pop-Busui R, Evans GW, Gertein HC, et al. Action to control cardiovascular risk in diabetes study group. Effects of cardiac autonomic dysfunction on mortality risk in the action to control cardiovascular risk in diabetes (ACCORD) trial. Diabetes Care. 2010;33:1578-84.
CrossRef
PubMed PubMedCentral
- Tomlinson DR, Gardiner NJ. Glucose neurotoxicity. Nat Rev Neurosci. 2008;9(1):36-45.
CrossRef
PubMed
- Alzoubi KH, Khabour OF, Alhaidar IA, Aleisa AM, Alkadhi KA. Diabetes impairs synaptic plasticity in the superior cervical ganglion: possible role for BDNF and oxidative stress. J Mol Neurosci. 2013;51(3):763-70.
CrossRef
PubMed
- Nastenko AO, Purnyn HE, Veselovsky NS. Physiological functions disorders of the superior cervical ganglion neurons in diabetes mellitus. Fiziol Zh. 2022; 68(1):74-86.
CrossRef
- Piconi L, Quagliaro L, Ceriello A. Oxidative stress in diabetes. Clin Chem Lab Med. 2003; 41:1144-49.
CrossRef
PubMed
- Moussa SA. Oxidative stress in diabetes mellitus. Roman J Biophys. 2008;18:225-36.
- Sivitz WI, Yorek MA. Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal. 2010;12:537-77.
CrossRef
PubMed PubMedCentral
- Kayama Y, Raaz U, Jagger A, Matti A. Diabetic cardiovascular disease induced by oxidative stress. Int J Mol Sci. 2015; 16.10:25234-63.
CrossRef
PubMed PubMedCentral
- Spallone V. Update on the impact, diagnosis and management of cardiovascular autonomic neuropathy in diabetes: what is defined, what is new, and what is unmet. Diabet Metab J. 2019;43(1):3-30.
CrossRef
PubMed PubMedCentral
- Bandeira SM, Guedes GS, Fonseca LJS, Pires AS, Gelain DP, Claudio J, Moreira F, Rabelo LA, Vasconcelos SML, Goulart MOF. Characterization of blood oxidative stress in type 2 diabetes mellitus patients: Increase in lipid peroxidation and SOD activity. Oxid Med Cell Longev (Online). 2012;819310.
CrossRef
PubMed PubMedCentral
- Soliman GZA. Blood lipid peroxidation (superoxide dismutase, malondialdehyde, glutathione) levels in Egyptian type 2 diabetes patients. Singapore J. 2008;49:129136.
- Tavares AM, Silva JH, Bensusan OCh, Ferreira ACF, de Lima Matos LP, et al. Altered superoxide dismutase-1 activity and intercellular adhesion molecule 1 (ICAM1) levels in patients with type 2 diabetes mellitus. PLoS ONE. 2019;14(5): 216-56.
CrossRef
PubMed PubMedCentral
- Mendoza-Núñez VM, García-Martínez BI, Rosado-Pérez J, Santiago-Osorio E, Pedraza-Chaverri J, HernándezAbad VJ. The effect of 600 mg alpha-lipoic acid supplementation on oxidative stress, inflammation, and RAGE in older adults with type 2 diabetes mellitus. Oxid Med Cell Long (Online). 2019;3276958.
CrossRef
PubMed PubMedCentral
- Dickinson D, Forman H. Cellular glutathione and thiols metabolism. Biochem Pharmacol. 2002;64:1019-26.
CrossRef
PubMed
- Kolesnichenko T, Bardimova E, Sergeeva M, Sergeeva N, Verlan N, Belouova I. Glutathione antioxidant system in patients with Diabetes Mellitus. J Clin Lipidol. 2008;2(5S):124-5.
- Mendez MM, Folgado J, Tormo C, Artero A, Ascaso M, Martinez-Hervás S,et al. Altered glutathione system is associated with the presence of distal symmetric peripheral polyneuropathy in type 2 diabetic subjects. J Diabet Complicat. 2015;29:923-7.
CrossRef
PubMed
- Persson P, Palm F. Hypoxia-inducible factor activation in diabetic kidney disease. Curr Opin Nephrol Hyperten. 2017;26(5):345-50.
CrossRef
PubMed
- Catrina S-B, Zheng X. Hypoxia and hypoxia-inducible factors in diabetes and its complications. Diabetologia. 2021;64:709-16.
CrossRef
PubMed PubMedCentral
- Yasuda-Yamahara M, Kume S, Maegawa H. Roles of mTOR in diabetic kidney disease. Antioxidants. 2021;10:321-35.
CrossRef
PubMed PubMedCentral
- Mao Z, Zhang W. Role of mTOR in glucose and lipid metabolism. Int J Mol Sci. 2018; 19(7):2043-53.
CrossRef
PubMed PubMedCentral
- Maiese K. Novel nervous and multi-system regenerative therapeutic strategies for diabetes mellitus with mTOR. Neural Regen Res.2016; 11(3):372-85.
CrossRef
PubMed PubMedCentral
- Elmlinger MW, Kriebel M, Ziegler D. Neuroprotective and anti-oxidative effects of the hemodialysate actovegin on primary rat neurons in vitro. Neuromolec Med. 2011;13(4):266-74.
CrossRef
PubMed PubMedCentral
- Ziegler D, Edmundson S, Gurieva I, Mankovsky B, et al. Predictors of response to treatment with Actovegin for 6 months in patients with type 2 diabetes and symptomatic polyneuropathy. J Diabet Comlicat. 2017;31(7):1181-7.
CrossRef
PubMed
- Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol. 1978;52:302-10.
CrossRef
PubMed
- Wolff SP. Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods Enzymol. 1994;233:182-9.
CrossRef
- Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972; 247(10):3170-5.
CrossRef
- Aebi H. Catalase. In: Methods of Enzymatic Analysis, Ed: Bergmeyer, H.U. Weinheim and Academic Press. 1983:227-82.
- Flohé L, Günzler WA. Assays of glutathione peroxidase. Methods Enzymol. 1984;105:114-21.
CrossRef
PubMed
- Sedlak J, Lindsay RH. Estimation of total, protein bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Annal Biochem.1968;25(1): 192-205.
CrossRef
PubMed
- Mankovska IM, Rozova KV, Gonchar OO, Nosar VI, Bratus LV, Drevitska TI, Glazyrin ID, Karasevich NV, Karaban IM. The Influence of capicor on the Parkinson's disease pathogenetic links. Fiziol Zh. 2018;64(1):16-24.
CrossRef
- Mezzetti A, Cipollone P, Cuccurullo F. Oxidative stress and cardiovascular complications in diabetes: isoprostanes as a new markers on an old paradigm. Cardiovascul Res. 2000;47:475-88.
CrossRef
PubMed
- Buettner R. Superoxide dismutase in redox biology: the roles of superoxide and hydrogen peroxide. Anticancer Agents Med Chem. 2011;11(4): 341-6.
CrossRef
PubMed PubMedCentral
- Saenko Y A, Gonchar OO, Mankovska IM, Drevytska TI, Bratus LV, Mankovsky B. Oxydative stress in type 2 diabetic patients: involvement of HIF-1 alpha and mTOR genes expression. Ukr Biochem J. 2023; 95(2):47-56.
CrossRef
- Botusan IR, Sunkari VG, Savu O, Catrina AI, Grünler J, Lindberg S, Pereira T, Ylä-Herttuala S, Poellinger L, Brismar K, Catrina S-B. Stabilization of HIF-1alpha is critical to improve wound healing in diabetic mice. Proc Natl Acad Sci USA. 2008;105(49):19426-31.
CrossRef
PubMed PubMedCentral
- Weidemann A, Johnson RS. Biology of HIF-1alpha. Cell Death Differ. 2008;15(4):621-7.
CrossRef
PubMed
- López-Cano C, Gutiérrez-Carrasquilla L, Barbé F, Sánchez E, Hernández M, Martí R, et al. Effect of type 2 diabetes mellitus on the hypoxia-inducible factor 1-alpha expression. Is there a relationship with the clock genes? J Clin Med. 2020;9:2632-42.
CrossRef
PubMed PubMedCentral
- Kumawat M, Pahwa MB, Gahlaut VS, Singh N. Status of antioxidant enzymes and lipid peroxidation in type 2 diabetes mellitus with micro vascular complications. Open Endocrinol J. 2009;3:12-5.
CrossRef
- Thiemermann C. Membrane-permeable radical scavengers (tempol) for shock, ischemia-reperfusion injury, and inflammation. Crit Care Med. 2003;31:76-84.
CrossRef
PubMed
- Asaba K, Tojo A, Onozato ML, Goto A, Fujita T. Doubleedged action of SOD mimetic in diabetic nephropathy. J Cardiovascul Pharmacol. 2007;49:13-9.
CrossRef
PubMed
Campanucci V, Krishnaswamy A, Cooper E. Diabetes depresses synaptic transmission in sympathetic ganglia by inactivating nAChRs through a conserved intracellular cysteine residue. Neuron. 2010;66(6):827-34. Material nadiishov do redaktsii 30.06.2023
CrossRef
PubMed
- Gunton JE. Hypoxia-inducible factors and diabetes. J Clin Invest. 2020;130(10):5063-73.
CrossRef
PubMed PubMedCentral
- Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149:274-93.
CrossRef
PubMed PubMedCentral
|