TYPES OF CELL DEATH THAT OCCURRED DUE TO THE INFLUENCE OF ACTIVE FORMS OF OXYGEN AND DAMAGE TO DNA
V. Velykyi, T. Voznesenska
Bogomoletz Institute of Physiology, National Academy of
Sciences of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz69.04.115
Abstract
The purpose of the review was to find and analyze the literature
on such types of cell death, which are realized due to DNA
damage, namely, mitotic catastrophe; anoikis; pyroptosis;
parthanatos and due to the influence of active forms of
oxygen, namely mitoptosis; lysosome-dependent cell death;
necrosis associated with increased mitochondrial permeability;
necroptosis; netosis; ferroptosis. Apoptosis and autophagy,
which are realized both due to the influence of reactive oxygen
species and DNA damage, are considered separately.Cell death
plays an important role in development, tissue homeostasis,
inflammation, immunity, and many pathophysiological
conditions. On the one hand, it becomes an etiological
determinant in diseases associated with the irreversible loss
of postmitotic tissues (for example, myocardial infarction,
neurodegeneration). On the other hand, defects in the signaling
cascades that trigger cell death are associated with pathologies
characterized by uncontrolled expansion or accumulation of
cells (eg, some autoimmune diseases, cancer). Therefore, cell
death can be defined as a promising therapeutic target.
Keywords:
cell death; DNA damage; reactive oxygen species.
References
- Galluzzi L, Vitale I, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differentiat. 2018; 25:486-541.
CrossRef
PubMed PubMedCentral
- Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G. The molecular machinery of regulated cell death. Cell Res. 2019; 29(5):347-64.
CrossRef
PubMed PubMedCentral
- Woo Y, Lee HJ,Jung YM,Jung YJ. Regulated necrotic cell death in alternative tumor therapeutic strategies. Cells. 2020; 9(12):2709.
CrossRef
PubMed PubMedCentral
- Santagostino SF, Assenmacher ChA, Tarrant JC, Adedeji AO, Radaelli E. Mechanisms of regulated cell death. Current Perspect Vet Pathol. 2021; 58(4):596-623.
CrossRef
PubMed
- Peng F, Liao M, Qin R, Zhu Sh, Peng Ch, Fu L, et al. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther. 2022; 7(1):286.
CrossRef
PubMed PubMedCentral
- Martens MD, Karch J, Gordon JW. The molecular mosaic of regulated cell death in the cardiovascular system. Biochim Biophys Acta Mol Basis Dis. 2022; 1868(1):166297.
CrossRef
PubMed
- Qin R, You FM, Zhao Q, et al. Naturally derived indole alkaloids targeting regulated cell death (RCD) for cancer therapy: from molecular mechanisms to potential therapeutic targets. J Hematol Oncol. 2022;133:13045-50.
CrossRef
PubMed PubMedCentral
- Suematsu T, Li Y, Kojima H, Nakajima K, Oshimura M, Inoue T. Deacetylation of the mitotic checkpoint protein BubR1 at lysine 250 by SIRT2 and subsequent effects on BubR1 degradation during the prometaphase/ anaphase transition. Biochem Biophys Res Commun. 2014; 453(3):588-94.
CrossRef
PubMed
- Yi F, Zhang Y, Wang Z, Wang Z, Li Z, Zhou T, et al. The deacetylation-phosphorylation regulation of SIRT2- SMC1A axis as a mechanism of antimitotic catastrophe in early tumorigenesis. Sci Adv. 2021;7(9): 5518.
CrossRef
PubMed PubMedCentral
- Zhivotovsky B, Kroemer G. Apoptosis and genomic instability. Nat Rev Mol Cell Biol. 2004; 5(9):752-62.
CrossRef
PubMed
- Luo ML, Li J, Shen L, Chu J, Guo Q, Liang G, et al. The role of APAL/ST8SIA6-AS1 lncRNA in PLK1 activation and mitotic catastrophe of tumor cells. J Natl Cancer Inst. 2020; 112(4):356-68.
CrossRef
PubMed PubMedCentral
- Khing TM, Choi WS, Kim DM, Po WW, Thein W, Shin CY, et al. The effect of paclitaxel on apoptosis, autophagy and mitotic catastrophe in AGS cells. Sci Rep. 2021;11(1):23490.
CrossRef
PubMed PubMedCentral
- Frisch S M, Francis H. Disruption of epithelial cellmatrix interactions induces apoptosis. J Cell Biol. 1994;124(4):619-26.
CrossRef
PubMed PubMedCentral
- Taddei ML, Giannoni E, Fiaschi T, Chiarugi P. Anoikis: an emerging hallmark in health and diseases. J Pathol. 2012; 226(2):380-93.
CrossRef
PubMed
- Paoli P, Giannoni E, Chiarugi P. Anoikis molecular pathways and its role in cancer progression. Biochim Biophys Acta. 2013;1833(12):3481-98.
CrossRef
PubMed
- Wang J, Luo Z, Lin L, Sui X, Yu L, Xu C, et al. Anoikisassociated lung cancer metastasis: Mechanisms and therapies. Cancers (Basel). 2022; 14(19):4791.
CrossRef
PubMed PubMedCentral
- Gilmore AP. Anoikis. Cell Death Differ. 2005;12(2):1473-7.
CrossRef
PubMed
- Cai Zh, Zhou F. A novel Anoikis and immune-related genes marked prognostic signature for colorectal cancer. Medicine (Baltimore). 2022; 101(46):31127.
CrossRef
PubMed PubMedCentral
- Khwaja A, Rodriguez-Viciana P, Wennström S, Warne PH, Downward J. Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO J. 1997; 16(10):2783-93.
CrossRef
PubMed PubMedCentral
- Krasilnikov MA. Phosphatidylinositol-3 kinase dependent pathways: the role in control of cell growth, survival, and malignant transformation. Biochemistry. 2000; 65(1):59-67.
- Kim DH, Bang EJ, Ha S, Jung HJ, Choi YJ, Yu BP, et al. Organ-differential roles of Akt/FoxOs axis as a key metabolic modulator during aging. Aging Dis. 2021; 12(7):1713-28.
CrossRef
PubMed PubMedCentral
- Shi J, Gao W, Shao F. Pyroptosis: Gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci. 2017; 42(4):245-54.
CrossRef
PubMed
- Ruan J, Wang S, Wang J. Mechanism and regulation of pyroptosis-mediated in cancer cell death. Chem Biol Interact. 2020. 25; 323:109052.
CrossRef
PubMed
- Wu H, Qian D, Bai X, Sun S. Targeted pyroptosis is a potential therapeutic strategy for cancer. J Oncol. 2022; 24:2515525.
CrossRef
PubMed PubMedCentral
- Rolls A, Shechter R, London A, Ziv Y, Ronen A, Levy R, et al. Toll-like receptors modulate adult hippocampal neurogenesis. Nat Cell Biol. 2007; 9(9):1081-8.
CrossRef
PubMed
- Sakai S, Shichita T. Role of alarmins in poststroke inflammation and neuronal repair. Semin Immunopathol. 2022;26:961-5.
CrossRef
PubMed
- Magna M, Pisetsky DS. The alarmin properties of DNA and DNA-associated nuclear proteins. Clin Ther. 2016; 38(5):1029-41.
CrossRef
PubMed
- Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: host cell death and inflammation. Nat Rev Microbiol. 2009; 7(2):99-109.
CrossRef
PubMed PubMedCentral
- Sharif H, Wang L, Wang WL, Magupalli VG, Andreeva L, Qiao Q, et al. Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome. Nature. 2019; 570(7761):338-43.
CrossRef
PubMed PubMedCentral
- Zheng M, Kanneganti TD. The regulation of the ZBP1- NLRP3 inflammasome and its implications in pyroptosis, apoptosis, and necroptosis (PANoptosis). Immunol Rev. 2020; 297(1):26-38.
CrossRef
PubMed PubMedCentral
- Fahmi T, Wang X, Zhdanov DD, Islam I, Apostolov EO, Savenka AV, et al. DNase I induces other endonucleases in kidney tubular epithelial cells by its DNA-degrading activity. Int J Mol Sci. 2020; 21(22):8665.
CrossRef
PubMed PubMedCentral
- Kulbay M, Bernier-Parker N, Bernier J. The role of the DFF40/CAD endonuclease in genomic stability. Apoptosis. 2021; 26(1-2):9-23.
CrossRef
PubMed
- Fatokun AA, Dawson VL, Dawson TM. Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br J Pharmacol. 2014; 171(8):2000-16.
CrossRef
PubMed PubMedCentral
- Zheng D, Liu J, Piao H, Zhu Z, Wei R, Liu K. ROStriggered endothelial cell death mechanisms: Focus on pyroptosis, parthanatos, and ferroptosis. Front Immunol. 2022;13:1039241.
CrossRef
PubMed PubMedCentral
- Andrabi SA, Dawson TM, Dawson VL. Mitochondrial and nuclear cross talk in cell death: parthanatos. Ann NY Acad Sci. 2008;1147:233-41.
CrossRef
PubMed PubMedCentral
- Najdawi ZR, Abu-Asab MS. An ultrastructural perspective on cell death. Jordan Med J. 2022; 56(1):10.35516.
CrossRef
PubMed PubMedCentral
- Wang Y, Luo W, Wang Y. PARP-1 and its associated nucleases in DNA damage response. DNA Repair (Amst). 2019; 81:102651.
CrossRef
PubMed PubMedCentral
- Sefer A, Kallis E, Eilert T, Röcker C, Kolesnikova O, Neuhaus D, Eustermann S, Michaelis J. Structural dynamics of DNA strand break sensing by PARP-1 at a single-molecule level. Nat Commun. 2022; 13(1):6569.
CrossRef
PubMed PubMedCentral
- Wang Y, Dawson VL, Dawson TM. Poly(ADP-ribose) signals to mitochondrial AIF: a key event in parthanatos. Exp Neurol. 2009; 218(2):193-202.
CrossRef
PubMed PubMedCentral
- Li X, Zhang Z, Fan B, Li Y, Song D, Li GY. PARP-1 is a potential marker of retinal photooxidation and a key signal regulator in retinal light injury. Oxid Med Cell Long. 2022;10: 6881322.
CrossRef
PubMed PubMedCentral
- Jangamreddy JR, Los MJ. Mitoptosis, a novel mitochondrial death mechanism leading predominantly to activation of autophagy. Hepat Mon. 2012;12(8):6159.
CrossRef
PubMed PubMedCentral
- Chakraborty A, Li Y, Zhang C, Li Y, LeMaire SA, Shen YH. Programmed cell death in aortic aneurysm and dissection: A potential therapeutic target. J Mol Cell Cardiol. 2022;163:67-80.
CrossRef
PubMed PubMedCentral
- Gómez-Sintes R, Ledesma MD, Boya P. Lysosomal cell death mechanisms in aging. Ageing Res Rev. 2016; 32:150-68.
CrossRef
PubMed
- Dutta RK, Lee JN, Maharjan Y, Park Ch, Choe SK, Ho YS, et al. Catalase-deficient mice induce aging faster through lysosomal dysfunction. Cell Commun Signal. 2022; 20(1):192.
CrossRef
PubMed PubMedCentral
- Serrano-Puebla A, Boya P. Lysosomal membrane permeabilization in cell death: new evidence and implications for health and disease. Ann NY Acad Sci. 2016; 1371(1):30-44.
CrossRef
PubMed
- Zhu H, Sun A. Programmed necrosis in heart disease: Molecular mechanisms and clinical implications. J Mol Cell Cardiol. 2018;116:125-34.
CrossRef
PubMed
- Teng X, Degterev A, Jagtap P, Xing X, Choi S, Denu R, et al. Structure-activity relationship study of novel necroptosis inhibitors. Bioorg Med Chem Lett. 2005;15(22):5039-44.
CrossRef
PubMed
- Ying L, Benjanuwattra J, Chattipakorn SC, Chattipakorn N. The role of RIPK3-regulated cell death pathways and necroptosis in the pathogenesis of cardiac ischemia-reperfusion injury. Acta Physiol (Oxf). 2021; 231(2):13541.
CrossRef
PubMed
- Hua Y, Qian J, Cao J, Wang X, Zhang W, Zhang J. Ca2+/ calmodulin-dependent protein kinase II Regulation by Inhibitor of receptor interacting protein kinase 3 alleviates necroptosis in glycation end products-induced cardiomyocytes injury. Int J Mol Sci. 2022; 23(13):6988.
CrossRef
PubMed PubMedCentral
- Kaczmarek A, Vandenabeele P, Krysko DV. Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity. 2013;38(2):209-23.
CrossRef
PubMed
- Linkermann A, Green DR. Necroptosis. N Engl J Med. 2014;370(5):455-65.
CrossRef
PubMed PubMedCentral
- Fulda S. The mechanism of necroptosis in normal and cancer cells. Cancer Biol Ther. 2013;14(11):999-1004.
CrossRef
PubMed PubMedCentral
- Chaouhan HS, Vinod C, Mahapatra N, Yu SH, Wang IK, Chen KB, et al. Necroptosis: A pathogenic negotiator in human diseases. Int J Mol Sci. 2022; 23(21):12714.
CrossRef
PubMed PubMedCentral
- Chen X, He WT, Hu L, Li J, Fang Y, Wang X, et al. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channelmediated necroptosis. Cell Res. 2016; 26(9):1007-20.
CrossRef
PubMed PubMedCentral
- Shi CS, Kehrl JH. Bcl-2 regulates pyroptosis and necroptosis by targeting BH3-like domains in GSDMD and MLKL. Cell Death Discov. 2019; 9(5):151.
CrossRef
PubMed PubMedCentral
- Brinkmann V, Reichard U, Goosmann Ch, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004; 303(5663):1532-5.
CrossRef
PubMed
- Barczyk M, Carracedo S, Gullberg D. Integrins. Cell Tissue Res. 2010; 339(1):269-80.
CrossRef
PubMed PubMedCentral
- Zeltz C, Gullberg D. The integrin-collagen connection -a glue for tissue repair? J Cell Sci. 2016; 129(4):653-64.
CrossRef
PubMed
- Weinrauch Y, Drujan D, Shapiro SD, Weiss J, Zychlinsky A. Neutrophil elastase targets virulence factors of enterobacteria. Nature. 2002; 417(6884):91-4.
CrossRef
PubMed
- Liu Y, Yan P, Bin Y, Qin X, Wu Z. Neutrophil extracellular traps and complications of liver transplantation. Front Immunol. 2022; 13:1054753.
CrossRef
PubMed PubMedCentral
- Gabriel Ch, McMaster WR, Girard D, Descoteaux A. Leishmania donovani promastigotes evade the antimicrobial activity of neutrophil extracellular traps. J Immunol. 2010;185(7):4319-27.
CrossRef
PubMed
- Liang Ch, Lian N, Li M. The emerging role of neutrophil extracellular traps in fungal infection. Front Cell Infect Microbiol. 2022;12:900895.
CrossRef
PubMed PubMedCentral
- Köckritz-Blickwede MK, Goldmann O, Thulin P, et al. Phagocytosisindependent antimicrobial activity of mast cells by means of extracellular traps formation. Blood. 2008; 111(6):3070-80.
CrossRef
PubMed
- von Köckritz-Blickwede M, Nizet V. Innate immunity turned inside-out: antimicrobial defense by phagocyte extracellular traps. J Mol Med (Berl). 2009; 87(8):775-83.
CrossRef
PubMed PubMedCentral
- Möllerherm H, von Köckritz-Blickwede M, BranitzkiHeinemann K. Antimicrobial activity of mast cells: Role and relevance of extracellular DNA. Traps Front Immunol. 2016; 7:265.
CrossRef
PubMed PubMedCentral
- Yost ChC, Cody MJ, Harris ES, Thornton NL, McInturff AM, Martinez ML, et al. Impaired neutrophil extracellular trap (NET) formation: a novel innate immune deficiency of human neonates. Blood. 2009;113(25):6419-27.
CrossRef
PubMed PubMedCentral
- Beudeker CR, Vijlbrief DC, van Montfrans JM, Rooijakkers SHM, van der Flier M. Neonatal sepsis and transient immunodeficiency: Potential for novel immunoglobulin therapies? Front Immunol. 2022;13:1016877.
CrossRef
PubMed PubMedCentral
- Hakkim A, Fürnrohr BG, Amann K, Laube B, Abed UA, Brinkmann V, et al. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci USA. 2010;107(21):9813-8.
CrossRef
PubMed PubMedCentral
- Zhang Y, Li Y, Sun N, Tang H, Ye J, Liu Y, et al. NETosis is critical in patients with severe community-acquired pneumonia. Front Immunol. 2022; 13:1051140.
CrossRef
PubMed PubMedCentral
- Chen GH, Song ChCh, Pantopoulos K, Wei XL, Zheng H, Luo Z. Mitochondrial oxidative stress mediated Feinduced ferroptosis via the NRF2-ARE pathway. Free Radic Biol Med. 2022; 180:95-107.
CrossRef
PubMed
- Zhao Y, Li Y, Zhang R, Wang F,Wang T, Jiao Y. The role of erastin in ferroptosis and its prospects in cancer therapy. Onco Targets Ther. 2020; 13:5429-41.
CrossRef
PubMed PubMedCentral
- Liu Nan, Lin Xiaoli, Huang Chengying. Activation of the reverse transsulfuration pathway through NRF2/ CBS confers erastin-induced ferroptosis resistance. Br J Cancer. 2020; 122(2):279-92.
CrossRef
PubMed PubMedCentral
- Angeli JPF, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 2014;16(12):1180-91.
CrossRef
PubMed PubMedCentral
- Li S, Wang R, Wang Y, Liu Y, Qiao Y, Li P, et al. Ferroptosis: A new insight for treatment of acute kidney injury. Front Pharmacol. 2022; 13:1065867.
CrossRef
PubMed PubMedCentral
- Vaux DL. Apoptosis timeline. Cell Death Differ. 2002; 9(4):349-54.
CrossRef
PubMed
- Gudipaty SA, Conner CM, Rosenblatt J, Montell DJ. Unconventional ways to live and die: Cell death and survival in development, homeostasis, and disease. Annu Rev Cell Dev Biol. 2018; 34:311-32.
CrossRef
PubMed PubMedCentral
- Redondo M, Fùnez R, Esteban F. Apoptosis in the development and treatment of laryngeal cancer: Role of p53, Bcl-2 and clusterin. Apoptosis in carcinogenesis and chemotherapy. Springer, Dordrecht. 2020; 10:9597-9.
- Chaudhry GS, Akim AM, Sung YY, Sifzizul TMT. Cancer and apoptosis: The apoptotic activity of plant and marine natural products and their potential as targeted cancer therapeutics. Front Pharmacol. 2022; 13: 842376.
CrossRef
PubMed PubMedCentral
- Sheshachalam A, Srivastava N, Mitchell T, Lacy P, Eitzen G. Granule protein processing and regulated secretion in neutrophils. Front Immunol. 2014;5:448.
CrossRef
PubMed PubMedCentral
- Maskarinec SA, McKelvy M, Boyle K, Hotchkiss H, Duarte ME, Addison B, et al. Neutrophil functional heterogeneity is a fixed phenotype and is associated with distinct gene expression profiles. J Leuk Biol. 2022; 112(6):1485-95.
CrossRef
PubMed
- Trapani JA. Granzymes: a family of lymphocyte granule serine proteases. Genome Biol. 2001; 2(12): 3014.
CrossRef
PubMed PubMedCentral
- Hartel JCh, Merz N, Grösch S. How sphingolipids affect T cells in the resolution of inflammation. Front Pharmacol. 2022; 13:1002915.
CrossRef
PubMed PubMedCentral
- Kaur J, Debnath J. Autophagy at the crossroads of catabolism and anabolism. Nat Rev Mol Cell Biol. 2015;16(8):461-72.
CrossRef
PubMed
- Kovaleva OV, Shitova MS, Zborovskaya IB. Autophagy: cell death or a way of survival? Clin Oncohematol. 2014; 7(2): 103-13.
- Lee J, Giordano S, Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signaling. Biochem J. 2012; 441(2):523-40.
CrossRef
PubMed PubMedCentral
- Gabusi E, Lenzi E, Manferdini C, Dolzani P, Columbaro M, Saleh Y, et al. Autophagy is a crucial path in chondrogenesis of adipose-derived mesenchymal stromal cells laden in hydrogel. Gels. 2022; 8(12):766.
CrossRef
PubMed PubMedCentral
- Kos J, Mitrović A, Nanut MP, Pišlar A. Lysosomal peptidases-intriguing roles in cancer progression and neurodegeneration. FEBS Open Bio. 2022; 12(4):708-38.
CrossRef
PubMed PubMedCentral
- Mu W, Rezek V, Martin H, Carrillo MA, Tomer S, Hamid P, et al. Autophagy inducer rapamycin treatment reduces IFN-I-mediated Inflammation and improves anti-HIV-1 T cell response in vivo. JCI Insight. 2022; 7(22): 159136.
CrossRef
PubMed PubMedCentral
- Galluzzi L, Pedro JM, Blomgren K, Kroemer G. Autophagy in acute brain injury. Nat Rev Neurosci. 2016; 17(8):467-84.
CrossRef
PubMed
- Anding AL, Baehrecke EH. Autophagy in cell life and cell death. Curr Top Dev In Vivo Biol. 2015; 114:67-91.
CrossRef
PubMed
- Xu T, Nicolson S, Denton D, Kumar S. Distinct requirements of Autophagy-related genes in programmed cell death. Cell Death Differ. 2015; 22(11):1792-802.
CrossRef
PubMed PubMedCentral
|