Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2023; 69(4): 115-125


TYPES OF CELL DEATH THAT OCCURRED DUE TO THE INFLUENCE OF ACTIVE FORMS OF OXYGEN AND DAMAGE TO DNA

V. Velykyi, T. Voznesenska

    Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz69.04.115


Abstract

The purpose of the review was to find and analyze the literature on such types of cell death, which are realized due to DNA damage, namely, mitotic catastrophe; anoikis; pyroptosis; parthanatos and due to the influence of active forms of oxygen, namely mitoptosis; lysosome-dependent cell death; necrosis associated with increased mitochondrial permeability; necroptosis; netosis; ferroptosis. Apoptosis and autophagy, which are realized both due to the influence of reactive oxygen species and DNA damage, are considered separately.Cell death plays an important role in development, tissue homeostasis, inflammation, immunity, and many pathophysiological conditions. On the one hand, it becomes an etiological determinant in diseases associated with the irreversible loss of postmitotic tissues (for example, myocardial infarction, neurodegeneration). On the other hand, defects in the signaling cascades that trigger cell death are associated with pathologies characterized by uncontrolled expansion or accumulation of cells (eg, some autoimmune diseases, cancer). Therefore, cell death can be defined as a promising therapeutic target.

Keywords: cell death; DNA damage; reactive oxygen species.

References

  1. Galluzzi L, Vitale I, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differentiat. 2018; 25:486-541. CrossRef PubMed PubMedCentral
  2. Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G. The molecular machinery of regulated cell death. Cell Res. 2019; 29(5):347-64. CrossRef PubMed PubMedCentral
  3. Woo Y, Lee HJ,Jung YM,Jung YJ. Regulated necrotic cell death in alternative tumor therapeutic strategies. Cells. 2020; 9(12):2709. CrossRef PubMed PubMedCentral
  4. Santagostino SF, Assenmacher ChA, Tarrant JC, Adedeji AO, Radaelli E. Mechanisms of regulated cell death. Current Perspect Vet Pathol. 2021; 58(4):596-623. CrossRef PubMed
  5. Peng F, Liao M, Qin R, Zhu Sh, Peng Ch, Fu L, et al. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther. 2022; 7(1):286. CrossRef PubMed PubMedCentral
  6. Martens MD, Karch J, Gordon JW. The molecular mosaic of regulated cell death in the cardiovascular system. Biochim Biophys Acta Mol Basis Dis. 2022; 1868(1):166297. CrossRef PubMed
  7. Qin R, You FM, Zhao Q, et al. Naturally derived indole alkaloids targeting regulated cell death (RCD) for cancer therapy: from molecular mechanisms to potential therapeutic targets. J Hematol Oncol. 2022;133:13045-50. CrossRef PubMed PubMedCentral
  8. Suematsu T, Li Y, Kojima H, Nakajima K, Oshimura M, Inoue T. Deacetylation of the mitotic checkpoint protein BubR1 at lysine 250 by SIRT2 and subsequent effects on BubR1 degradation during the prometaphase/ anaphase transition. Biochem Biophys Res Commun. 2014; 453(3):588-94. CrossRef PubMed
  9. Yi F, Zhang Y, Wang Z, Wang Z, Li Z, Zhou T, et al. The deacetylation-phosphorylation regulation of SIRT2- SMC1A axis as a mechanism of antimitotic catastrophe in early tumorigenesis. Sci Adv. 2021;7(9): 5518. CrossRef PubMed PubMedCentral
  10. Zhivotovsky B, Kroemer G. Apoptosis and genomic instability. Nat Rev Mol Cell Biol. 2004; 5(9):752-62. CrossRef PubMed
  11. Luo ML, Li J, Shen L, Chu J, Guo Q, Liang G, et al. The role of APAL/ST8SIA6-AS1 lncRNA in PLK1 activation and mitotic catastrophe of tumor cells. J Natl Cancer Inst. 2020; 112(4):356-68. CrossRef PubMed PubMedCentral
  12. Khing TM, Choi WS, Kim DM, Po WW, Thein W, Shin CY, et al. The effect of paclitaxel on apoptosis, autophagy and mitotic catastrophe in AGS cells. Sci Rep. 2021;11(1):23490. CrossRef PubMed PubMedCentral
  13. Frisch S M, Francis H. Disruption of epithelial cellmatrix interactions induces apoptosis. J Cell Biol. 1994;124(4):619-26. CrossRef PubMed PubMedCentral
  14. Taddei ML, Giannoni E, Fiaschi T, Chiarugi P. Anoikis: an emerging hallmark in health and diseases. J Pathol. 2012; 226(2):380-93. CrossRef PubMed
  15. Paoli P, Giannoni E, Chiarugi P. Anoikis molecular pathways and its role in cancer progression. Biochim Biophys Acta. 2013;1833(12):3481-98. CrossRef PubMed
  16. Wang J, Luo Z, Lin L, Sui X, Yu L, Xu C, et al. Anoikisassociated lung cancer metastasis: Mechanisms and therapies. Cancers (Basel). 2022; 14(19):4791. CrossRef PubMed PubMedCentral
  17. Gilmore AP. Anoikis. Cell Death Differ. 2005;12(2):1473-7. CrossRef PubMed
  18. Cai Zh, Zhou F. A novel Anoikis and immune-related genes marked prognostic signature for colorectal cancer. Medicine (Baltimore). 2022; 101(46):31127. CrossRef PubMed PubMedCentral
  19. Khwaja A, Rodriguez-Viciana P, Wennström S, Warne PH, Downward J. Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO J. 1997; 16(10):2783-93. CrossRef PubMed PubMedCentral
  20. Krasilnikov MA. Phosphatidylinositol-3 kinase dependent pathways: the role in control of cell growth, survival, and malignant transformation. Biochemistry. 2000; 65(1):59-67.
  21. Kim DH, Bang EJ, Ha S, Jung HJ, Choi YJ, Yu BP, et al. Organ-differential roles of Akt/FoxOs axis as a key metabolic modulator during aging. Aging Dis. 2021; 12(7):1713-28. CrossRef PubMed PubMedCentral
  22. Shi J, Gao W, Shao F. Pyroptosis: Gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci. 2017; 42(4):245-54. CrossRef PubMed
  23. Ruan J, Wang S, Wang J. Mechanism and regulation of pyroptosis-mediated in cancer cell death. Chem Biol Interact. 2020. 25; 323:109052. CrossRef PubMed
  24. Wu H, Qian D, Bai X, Sun S. Targeted pyroptosis is a potential therapeutic strategy for cancer. J Oncol. 2022; 24:2515525. CrossRef PubMed PubMedCentral
  25. Rolls A, Shechter R, London A, Ziv Y, Ronen A, Levy R, et al. Toll-like receptors modulate adult hippocampal neurogenesis. Nat Cell Biol. 2007; 9(9):1081-8. CrossRef PubMed
  26. Sakai S, Shichita T. Role of alarmins in poststroke inflammation and neuronal repair. Semin Immunopathol. 2022;26:961-5. CrossRef PubMed
  27. Magna M, Pisetsky DS. The alarmin properties of DNA and DNA-associated nuclear proteins. Clin Ther. 2016; 38(5):1029-41. CrossRef PubMed
  28. Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: host cell death and inflammation. Nat Rev Microbiol. 2009; 7(2):99-109. CrossRef PubMed PubMedCentral
  29. Sharif H, Wang L, Wang WL, Magupalli VG, Andreeva L, Qiao Q, et al. Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome. Nature. 2019; 570(7761):338-43. CrossRef PubMed PubMedCentral
  30. Zheng M, Kanneganti TD. The regulation of the ZBP1- NLRP3 inflammasome and its implications in pyroptosis, apoptosis, and necroptosis (PANoptosis). Immunol Rev. 2020; 297(1):26-38. CrossRef PubMed PubMedCentral
  31. Fahmi T, Wang X, Zhdanov DD, Islam I, Apostolov EO, Savenka AV, et al. DNase I induces other endonucleases in kidney tubular epithelial cells by its DNA-degrading activity. Int J Mol Sci. 2020; 21(22):8665. CrossRef PubMed PubMedCentral
  32. Kulbay M, Bernier-Parker N, Bernier J. The role of the DFF40/CAD endonuclease in genomic stability. Apoptosis. 2021; 26(1-2):9-23. CrossRef PubMed
  33. Fatokun AA, Dawson VL, Dawson TM. Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br J Pharmacol. 2014; 171(8):2000-16. CrossRef PubMed PubMedCentral
  34. Zheng D, Liu J, Piao H, Zhu Z, Wei R, Liu K. ROStriggered endothelial cell death mechanisms: Focus on pyroptosis, parthanatos, and ferroptosis. Front Immunol. 2022;13:1039241. CrossRef PubMed PubMedCentral
  35. Andrabi SA, Dawson TM, Dawson VL. Mitochondrial and nuclear cross talk in cell death: parthanatos. Ann NY Acad Sci. 2008;1147:233-41. CrossRef PubMed PubMedCentral
  36. Najdawi ZR, Abu-Asab MS. An ultrastructural perspective on cell death. Jordan Med J. 2022; 56(1):10.35516. CrossRef PubMed PubMedCentral
  37. Wang Y, Luo W, Wang Y. PARP-1 and its associated nucleases in DNA damage response. DNA Repair (Amst). 2019; 81:102651. CrossRef PubMed PubMedCentral
  38. Sefer A, Kallis E, Eilert T, Röcker C, Kolesnikova O, Neuhaus D, Eustermann S, Michaelis J. Structural dynamics of DNA strand break sensing by PARP-1 at a single-molecule level. Nat Commun. 2022; 13(1):6569. CrossRef PubMed PubMedCentral
  39. Wang Y, Dawson VL, Dawson TM. Poly(ADP-ribose) signals to mitochondrial AIF: a key event in parthanatos. Exp Neurol. 2009; 218(2):193-202. CrossRef PubMed PubMedCentral
  40. Li X, Zhang Z, Fan B, Li Y, Song D, Li GY. PARP-1 is a potential marker of retinal photooxidation and a key signal regulator in retinal light injury. Oxid Med Cell Long. 2022;10: 6881322. CrossRef PubMed PubMedCentral
  41. Jangamreddy JR, Los MJ. Mitoptosis, a novel mitochondrial death mechanism leading predominantly to activation of autophagy. Hepat Mon. 2012;12(8):6159. CrossRef PubMed PubMedCentral
  42. Chakraborty A, Li Y, Zhang C, Li Y, LeMaire SA, Shen YH. Programmed cell death in aortic aneurysm and dissection: A potential therapeutic target. J Mol Cell Cardiol. 2022;163:67-80. CrossRef PubMed PubMedCentral
  43. Gómez-Sintes R, Ledesma MD, Boya P. Lysosomal cell death mechanisms in aging. Ageing Res Rev. 2016; 32:150-68. CrossRef PubMed
  44. Dutta RK, Lee JN, Maharjan Y, Park Ch, Choe SK, Ho YS, et al. Catalase-deficient mice induce aging faster through lysosomal dysfunction. Cell Commun Signal. 2022; 20(1):192. CrossRef PubMed PubMedCentral
  45. Serrano-Puebla A, Boya P. Lysosomal membrane permeabilization in cell death: new evidence and implications for health and disease. Ann NY Acad Sci. 2016; 1371(1):30-44. CrossRef PubMed
  46. Zhu H, Sun A. Programmed necrosis in heart disease: Molecular mechanisms and clinical implications. J Mol Cell Cardiol. 2018;116:125-34. CrossRef PubMed
  47. Teng X, Degterev A, Jagtap P, Xing X, Choi S, Denu R, et al. Structure-activity relationship study of novel necroptosis inhibitors. Bioorg Med Chem Lett. 2005;15(22):5039-44. CrossRef PubMed
  48. Ying L, Benjanuwattra J, Chattipakorn SC, Chattipakorn N. The role of RIPK3-regulated cell death pathways and necroptosis in the pathogenesis of cardiac ischemia-reperfusion injury. Acta Physiol (Oxf). 2021; 231(2):13541. CrossRef PubMed
  49. Hua Y, Qian J, Cao J, Wang X, Zhang W, Zhang J. Ca2+/ calmodulin-dependent protein kinase II Regulation by Inhibitor of receptor interacting protein kinase 3 alleviates necroptosis in glycation end products-induced cardiomyocytes injury. Int J Mol Sci. 2022; 23(13):6988. CrossRef PubMed PubMedCentral
  50. Kaczmarek A, Vandenabeele P, Krysko DV. Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity. 2013;38(2):209-23. CrossRef PubMed
  51. Linkermann A, Green DR. Necroptosis. N Engl J Med. 2014;370(5):455-65. CrossRef PubMed PubMedCentral
  52. Fulda S. The mechanism of necroptosis in normal and cancer cells. Cancer Biol Ther. 2013;14(11):999-1004. CrossRef PubMed PubMedCentral
  53. Chaouhan HS, Vinod C, Mahapatra N, Yu SH, Wang IK, Chen KB, et al. Necroptosis: A pathogenic negotiator in human diseases. Int J Mol Sci. 2022; 23(21):12714. CrossRef PubMed PubMedCentral
  54. Chen X, He WT, Hu L, Li J, Fang Y, Wang X, et al. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channelmediated necroptosis. Cell Res. 2016; 26(9):1007-20. CrossRef PubMed PubMedCentral
  55. Shi CS, Kehrl JH. Bcl-2 regulates pyroptosis and necroptosis by targeting BH3-like domains in GSDMD and MLKL. Cell Death Discov. 2019; 9(5):151. CrossRef PubMed PubMedCentral
  56. Brinkmann V, Reichard U, Goosmann Ch, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004; 303(5663):1532-5. CrossRef PubMed
  57. Barczyk M, Carracedo S, Gullberg D. Integrins. Cell Tissue Res. 2010; 339(1):269-80. CrossRef PubMed PubMedCentral
  58. Zeltz C, Gullberg D. The integrin-collagen connection -a glue for tissue repair? J Cell Sci. 2016; 129(4):653-64. CrossRef PubMed
  59. Weinrauch Y, Drujan D, Shapiro SD, Weiss J, Zychlinsky A. Neutrophil elastase targets virulence factors of enterobacteria. Nature. 2002; 417(6884):91-4. CrossRef PubMed
  60. Liu Y, Yan P, Bin Y, Qin X, Wu Z. Neutrophil extracellular traps and complications of liver transplantation. Front Immunol. 2022; 13:1054753. CrossRef PubMed PubMedCentral
  61. Gabriel Ch, McMaster WR, Girard D, Descoteaux A. Leishmania donovani promastigotes evade the antimicrobial activity of neutrophil extracellular traps. J Immunol. 2010;185(7):4319-27. CrossRef PubMed
  62. Liang Ch, Lian N, Li M. The emerging role of neutrophil extracellular traps in fungal infection. Front Cell Infect Microbiol. 2022;12:900895. CrossRef PubMed PubMedCentral
  63. Köckritz-Blickwede MK, Goldmann O, Thulin P, et al. Phagocytosisindependent antimicrobial activity of mast cells by means of extracellular traps formation. Blood. 2008; 111(6):3070-80. CrossRef PubMed
  64. von Köckritz-Blickwede M, Nizet V. Innate immunity turned inside-out: antimicrobial defense by phagocyte extracellular traps. J Mol Med (Berl). 2009; 87(8):775-83. CrossRef PubMed PubMedCentral
  65. Möllerherm H, von Köckritz-Blickwede M, BranitzkiHeinemann K. Antimicrobial activity of mast cells: Role and relevance of extracellular DNA. Traps Front Immunol. 2016; 7:265. CrossRef PubMed PubMedCentral
  66. Yost ChC, Cody MJ, Harris ES, Thornton NL, McInturff AM, Martinez ML, et al. Impaired neutrophil extracellular trap (NET) formation: a novel innate immune deficiency of human neonates. Blood. 2009;113(25):6419-27. CrossRef PubMed PubMedCentral
  67. Beudeker CR, Vijlbrief DC, van Montfrans JM, Rooijakkers SHM, van der Flier M. Neonatal sepsis and transient immunodeficiency: Potential for novel immunoglobulin therapies? Front Immunol. 2022;13:1016877. CrossRef PubMed PubMedCentral
  68. Hakkim A, Fürnrohr BG, Amann K, Laube B, Abed UA, Brinkmann V, et al. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci USA. 2010;107(21):9813-8. CrossRef PubMed PubMedCentral
  69. Zhang Y, Li Y, Sun N, Tang H, Ye J, Liu Y, et al. NETosis is critical in patients with severe community-acquired pneumonia. Front Immunol. 2022; 13:1051140. CrossRef PubMed PubMedCentral
  70. Chen GH, Song ChCh, Pantopoulos K, Wei XL, Zheng H, Luo Z. Mitochondrial oxidative stress mediated Feinduced ferroptosis via the NRF2-ARE pathway. Free Radic Biol Med. 2022; 180:95-107. CrossRef PubMed
  71. Zhao Y, Li Y, Zhang R, Wang F,Wang T, Jiao Y. The role of erastin in ferroptosis and its prospects in cancer therapy. Onco Targets Ther. 2020; 13:5429-41. CrossRef PubMed PubMedCentral
  72. Liu Nan, Lin Xiaoli, Huang Chengying. Activation of the reverse transsulfuration pathway through NRF2/ CBS confers erastin-induced ferroptosis resistance. Br J Cancer. 2020; 122(2):279-92. CrossRef PubMed PubMedCentral
  73. Angeli JPF, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 2014;16(12):1180-91. CrossRef PubMed PubMedCentral
  74. Li S, Wang R, Wang Y, Liu Y, Qiao Y, Li P, et al. Ferroptosis: A new insight for treatment of acute kidney injury. Front Pharmacol. 2022; 13:1065867. CrossRef PubMed PubMedCentral
  75. Vaux DL. Apoptosis timeline. Cell Death Differ. 2002; 9(4):349-54. CrossRef PubMed
  76. Gudipaty SA, Conner CM, Rosenblatt J, Montell DJ. Unconventional ways to live and die: Cell death and survival in development, homeostasis, and disease. Annu Rev Cell Dev Biol. 2018; 34:311-32. CrossRef PubMed PubMedCentral
  77. Redondo M, Fùnez R, Esteban F. Apoptosis in the development and treatment of laryngeal cancer: Role of p53, Bcl-2 and clusterin. Apoptosis in carcinogenesis and chemotherapy. Springer, Dordrecht. 2020; 10:9597-9.
  78. Chaudhry GS, Akim AM, Sung YY, Sifzizul TMT. Cancer and apoptosis: The apoptotic activity of plant and marine natural products and their potential as targeted cancer therapeutics. Front Pharmacol. 2022; 13: 842376. CrossRef PubMed PubMedCentral
  79. Sheshachalam A, Srivastava N, Mitchell T, Lacy P, Eitzen G. Granule protein processing and regulated secretion in neutrophils. Front Immunol. 2014;5:448. CrossRef PubMed PubMedCentral
  80. Maskarinec SA, McKelvy M, Boyle K, Hotchkiss H, Duarte ME, Addison B, et al. Neutrophil functional heterogeneity is a fixed phenotype and is associated with distinct gene expression profiles. J Leuk Biol. 2022; 112(6):1485-95. CrossRef PubMed
  81. Trapani JA. Granzymes: a family of lymphocyte granule serine proteases. Genome Biol. 2001; 2(12): 3014. CrossRef PubMed PubMedCentral
  82. Hartel JCh, Merz N, Grösch S. How sphingolipids affect T cells in the resolution of inflammation. Front Pharmacol. 2022; 13:1002915. CrossRef PubMed PubMedCentral
  83. Kaur J, Debnath J. Autophagy at the crossroads of catabolism and anabolism. Nat Rev Mol Cell Biol. 2015;16(8):461-72. CrossRef PubMed
  84. Kovaleva OV, Shitova MS, Zborovskaya IB. Autophagy: cell death or a way of survival? Clin Oncohematol. 2014; 7(2): 103-13.
  85. Lee J, Giordano S, Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signaling. Biochem J. 2012; 441(2):523-40. CrossRef PubMed PubMedCentral
  86. Gabusi E, Lenzi E, Manferdini C, Dolzani P, Columbaro M, Saleh Y, et al. Autophagy is a crucial path in chondrogenesis of adipose-derived mesenchymal stromal cells laden in hydrogel. Gels. 2022; 8(12):766. CrossRef PubMed PubMedCentral
  87. Kos J, Mitrović A, Nanut MP, Pišlar A. Lysosomal peptidases-intriguing roles in cancer progression and neurodegeneration. FEBS Open Bio. 2022; 12(4):708-38. CrossRef PubMed PubMedCentral
  88. Mu W, Rezek V, Martin H, Carrillo MA, Tomer S, Hamid P, et al. Autophagy inducer rapamycin treatment reduces IFN-I-mediated Inflammation and improves anti-HIV-1 T cell response in vivo. JCI Insight. 2022; 7(22): 159136. CrossRef PubMed PubMedCentral
  89. Galluzzi L, Pedro JM, Blomgren K, Kroemer G. Autophagy in acute brain injury. Nat Rev Neurosci. 2016; 17(8):467-84. CrossRef PubMed
  90. Anding AL, Baehrecke EH. Autophagy in cell life and cell death. Curr Top Dev In Vivo Biol. 2015; 114:67-91. CrossRef PubMed
  91. Xu T, Nicolson S, Denton D, Kumar S. Distinct requirements of Autophagy-related genes in programmed cell death. Cell Death Differ. 2015; 22(11):1792-802. CrossRef PubMed PubMedCentral

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2025.