| 
  
    |  |  |  |  
    |  | 
  
    
    | 
 CURRENT VIEW ON PATHOGENIC MECHANISMS OF DIABETIC RETINOPATHYI.M. Mikheytseva 
The Fialtov Institute of the Tissue Therapy of the National Academy of Medical Sciences of Ukraine, Odesa, Ukraine
DOI: https://doi.org/10.15407/fz69.03.106 
  
 
 
Abstract
Diabetes mellitus (DM) and its complications are an actual
problem of modern medicine. This pathology continues to
spread throughout the world like a non-infectious epidemic.
In this review new data about the role of different cellular
mechanisms in forming of diabetic retinopathy (DR), namely,
oxidative-nitrosative stress, mitochondrial dysfunction, neurodegeneration and inflammation. A new approach to DR pathogenesis is the primacy of the neurodegenerative changes in the
retina vs previously held views of the problem as а microvascular pathology of the eye only. At the moment, hyperglycemia
is considered as the main etiological factor of DR. Activation
of the oxidation of excess glucose triggers a cascade of reactions with the formation of oxidative and nitrosative stress.
Mitochondria are the most sensitive to oxidative-nitrosative
organelles in cells of the retina. Hyperglicemia-induced mitochondrial dysfunction, with cellular respiration disruption and
increased production of free radicals in neurons of the retina,
can promote their further degeneration and DR enhancing. Local inflammation in the retina, which is facilitated in DM, also
considered as a new component of DR pathogenesis. In this
case, the inflammatory cascade occurs at the molecular level
without clinical manifestations of inflammation. The review
provides analysis of modern literature data on this mechanism
involving in retinal complications of DM. It is emphasized,
that retinal inflammation in DM enhances neurodegeneration
and promote retinopathy.
 
Keywords: 
diabetes mellitus, retina, oxidative-nitrosative stress, mitochondrial dysfunction, neurodegeneration, inflammation.
References
 
Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, et al. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017; 128: 40-50.
CrossRef
PubMedStitt AW, et al. The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res. 2016; 51:156-86.
CrossRef
PubMedKaestner KH, Powers AC, Naji A, Consortium H, Atkinson MA. NIH Initiative to Improve Understanding of the Pancreas, Islet, and Autoimmunity in Type 1 Diabetes: The Human Pancreas Analysis Program (HPAP). Diabetes. 2019; 68:1394-402.
CrossRef
PubMed PubMedCentralBettini ML, Bettini M. understanding autoimmune diabetes through the prism of the tri-molecular complex. Front Endocrinol (Lausanne). 2017; 8:351.
CrossRef
PubMed PubMedCentralMezza T, Cinti F, Cefalo CMA, Pontecorvi A, Kulkarni RN, Giaccari A. beta-Cell fate in human insulin resistance and type 2 diabetes: A perspective on islet plasticity. Diabetes . 2019; 68:1121-9.
CrossRef
PubMed PubMedCentralBraffett BH, Gubitosi-Klug RA, Albers JW, Feldman EL, et al. Risk factors for diabetic peripheral neuropathy and cardiovascular autonomic neuropathy in the diabetes control and complications trial/epidemiology of diabetes interventions and complications (DCCT/EDIC) study. Diabetes. 2020; 69:1000-10.
CrossRef
PubMed PubMedCentralKanter JE, Hsu CC, Bornfeldt KE. Monocytes and macrophages as protagonists in vascular complications of diabetes. Front Cardiovascul Med. 2020; 7:10.
CrossRef
PubMed PubMedCentralSpencer BG, Estevez JJ, Liu E, Craig JE, Finnie JW. Pericytes, inflammation, and diabetic retinopathy. Inflammopharmacology. 2020; 28:697-709.
CrossRef
PubMedvan der Wijk AE, Hughes JM, Klaassen I, Van Noorden CJF, Schlingemann RO. Is leukostasis a crucial step or epiphenomenon in the pathogenesis of diabetic retinopathy? J Leukoc Biol. (2017) 102:993-1001.
CrossRef
PubMedRichner M, Ferreira N, Dudele A, Jensen TS, Vaegter CB, Goncalves NP. Functional and structural changes of the blood-nerve-barrier in diabetic neuropathy. Front Neurosci. 2018; 12:1038.
CrossRef
PubMed PubMedCentralSagoo MK, Gnudi L. Diabetic Nephropathy: An Overview. Methods Mol Biol. 2020; 2067:3-7.
CrossRef.1007/978-1-4939-9841-8_1
PubMedLynch SK, Abràmoff MD. Diabetic retinopathy is a neurodegenerative disorder. Vision Res. 2017; 139: 101-7.
CrossRef
PubMed PubMedCentralJonsson KB, Frydkjaer-Olsen U, Grauslund J. Vascular changes and neurodegeneration in the early stages of diabetic retinopathy: Which comes first? Ophthalmic Res. 2016;56(1):1-9.
CrossRef
PubMedYau JW, Rogers SL KR, Lamoureux EL, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012; 35:556-64.
CrossRef
PubMed PubMedCentralFrank RN. A comprehensive review of diabetic retinopathy-clinical aspects diabetic retinopathy. N Engl J Med. 2004;350:48-58.
CrossRef
PubMedWilkinson CP, Ferris FL, Klein RE, Lee PP, Agardh CD, Davis M, Dills D, Kampik A, Pararajasegaram R, Verdaguer JT. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology. 2003;110:1677-82.
CrossRef.1016/S0161-6420(03)00475-5
PubMedDas A, McGuire PG, Rangasamy S Diabetic macular edema: Pathophysiology and novel therapeutic targets. Ophthalmology. 2015; 122 (7): 1375-94.
CrossRef
PubMedAnuj Sharma, Deepesh Arora. Role of Inflammation in Diabetic Retinopathy. from Diabetic Eye Disease. Ed. by Giuseppe Lo Giudice. 2021.
CrossRefHirsch IB, Brownlee M. Beyond hemoglobin A1c--need for additional markers of risk for diabetic microvascular complications. JAMA. 2010;303(22):2291-2.
CrossRef
PubMedKlein R, Knudtson MD, Lee KE, Gangnon R, Klein BE. The Wisconsin Epidemiologic Study of Diabetic Retinopathy: XXII the twenty-five-year progression of retinopathy in persons with type 1 diabetes. Ophthalmology. 2008;115(11):1859-68.
CrossRef
PubMed PubMedCentralDuh EJ, Sun JK, Stitt AW. Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. JCI Insight. 2017; 2(14): e93751.
CrossRef
PubMed PubMedCentralPop-Busui R, Boulton AJ, Feldman EL, Bril V, et al. Diabetic neuropathy: A Position Statement by the American Diabetes Association. Diabet Care. 2017;40(1):136-54.
CrossRef
PubMed PubMedCentralAristidis V. Rayaz AM. Diabetic Neuropathy: Clinical Management. Humana Press. 2007.Hudiakova NV, Ivanov NV, Pchelin I Yu, et al. Diabetic neuropathy: molecular mechanisms of development and possibilities for pathogenetic therapy. Juvenis Scientia. 2019; 4:8-12.
CrossRefYounis Ahmad Hajam , Raksha Rani, Shahid Yousuf Ganie, et al. Oxidative stress in human pathology and aging: Molecular mechanisms and perspectives. Cells. 2022, 11, 552.
CrossRef
PubMed PubMedCentralZorov DB, Juhaszova M, Sollott SJ. Mitochondrial ROSinduced ROS release: an update and review. Biochim Biophys Acta. 2006;1757:509-17.
CrossRef
PubMedBrownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54:1615-25.
CrossRef
PubMedTien T, Zhang J, Muto T, et al. High glucose induces mitochondrial dysfunction in reyinal Muller cells: Implications for diabetic retinopathy. Invest Ophthalmol Vis Sci. 2017;58:2915-21.
CrossRef
PubMed PubMedCentralMasser DR, Otalora L, Clark NW, et al. Functional changes in the neural retina occur in the absence of mitochondrial dysfunction in a rodent model of diabetic retinopathy. J Neurochem. 2017;143:595-608.
CrossRef
PubMed PubMedCentralHan WH, Gotzmann J, Kuny S, et al. Modifications in retinal mitochondrial respiration precede Type 2 diabetes and protracted microvascular retinopathy. Invest Ophthalmol Vis Sci. 2017;58:3826-39.
CrossRef
PubMedKowluru RA, Kowluru A, Veluthakal R, et al. TIAM1- RAC1 signalling axis-mediated activation of NADPH oxidase-2 initiates mitochondrial damage in the development of diabetic retinopathy. Diabetologia. 2014;57:1047-56.
CrossRef
PubMed PubMedCentralWeidinger A. Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction. Biomolecules. 2015; 5:472-84.
CrossRef
PubMed PubMedCentralOrtega AL. Oxidative and nitrosative stress in the metastatic microenvironment. Cancers (Basel). 2010;2 (2):274-304.
CrossRef
PubMed PubMedCentralBauer G. Reactive oxygen and nitrogen species: efficient, selective, and interactive signals during intercellular induction of apoptosis. Anticancer Res. 2000;20:4115-39.Majima HJ, Indo HP, Suenaga S, et al. Mitochondria as Source of Free Radicals. In: Naito Y, Suematsu M, Yoshikawa T (eds.). Free Radical Biology in Digestive Diseases. Front Gastrointest Res. 2011; 29:12-22.
CrossRefHiroko P. Indo, et al. A mitochondrial superoxide theory for oxidative stress diseases and aging. J Clin Biochem Nutr. 2015; 56(1): 1-7.
CrossRef
PubMed PubMedCentralSharmelee Selvaraji, Luting Poh, Venkateswaran Natarajan et al. Negative conditioning of mitochondrial dysfunction in age-related neurodegenerative diseases. Cond Med. 2019; 2(1): 30-9.Ruchkin MP, Markelova EV, Fedyashev GA. Role of neuroproteins in retinal neurodegeneration in diabetic retinopathy. Pacific Med J. 2022;(3):32-5.
CrossRefLynch SK, Abràmoff MD. Diabetic retinopathy is a neurodegenerative disorder. Vision Res. 2017; 139: 101-7.
CrossRef
PubMed PubMedCentralForrester JV, Kuffova L, Delibegovic M. The role of inflammation in diabetic retinopathy. Front Immunol, 2020. Inflammation.doi:10.3389/fimmu.2020.583687
CrossRef
PubMed PubMedCentralButler JM, Ding BS. Angiocrine functions of organspecific endothelial cells. Nature. 2016; 529:316-25.
CrossRef
PubMed PubMedCentralLieth E, AJ Gardner Tw Fau-Barber, DA Barber Aj FauAntonetti, DA Antonetti. Retinal neurodegeneration: early pathology in diabetes. Graefes Arch Clin Exp Ophthalmol., 2000; 28 (1): 3-8.
CrossRef
PubMedDuh EJ, Sun JK, Stitt AW. Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. JCI Insight. 2017; 2:1-13.
CrossRef
PubMed PubMedCentralShen Nian, Amy C Y Lo, Yajing Mi, et al. Neurovascular unit in diabetic retinopathy: pathophysiological roles and potential therapeutical targets. Eye Vis (Lond). 2021;8(1):15.
CrossRef
PubMed PubMedCentralSokol S, Moskowitz A, Skarf B, Evans R, Molitch M, Senior B. Contrast sensitivity in diabetics with and without background retinopathy. Arch Ophthalmol. 1985;103(1):51-4.
CrossRef
PubMedBarber AJ, Lieth E, Khin SA, Antonetti DA, Buchanan AG, Gardner TW. Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest. 1998;102(4):783-91.
CrossRef
PubMed PubMedCentralCarrasco E, Hernández C, Miralles A, Huguet P, Farrés J, Simó R. Lower somatostatin expression is an early event in diabetic retinopathy and is associated with retinal neurodegeneration. Diabetes Care. 2007;30(11):2902-08.
CrossRef
PubMedvan Dijk HW, et al. Selective loss of inner retinal layer thickness in type 1 diabetic patients with minimal diabetic retinopathy. Invest Ophthalmol Vis Sci. 2009;50(7):3404-09.
CrossRef
PubMed PubMedCentralvan Dijk HW, et al. Decreased retinal ganglion cell layer thickness in patients with type 1 diabetes. Invest Ophthalmol Vis Sci. 2010;51(7):3660-65.
CrossRef
PubMed PubMedCentralElliott H. Sohn, Hille W. van Dijk, Chunhua Jiao, et al. Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. Proc Natl Acad Sci USA. 2016; 113(19): E2655-64.
CrossRef
PubMed PubMedCentralGardner TW, Davila JR The neurovascular unit and the pathophysiologic basis of diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2017; 255(1);1-6.
CrossRef
PubMed PubMedCentralDas PG, McGuire S Rangasamy. Diabetic macular edema: Pathophysiology and novel therapeutic targets. Ophthalmology, 2015;122 (7):1375-94.
CrossRef
PubMedFang EF, Scheibye-Knudsen M, Chua KF, et al. Nuclear DNA damage signalling to mitochondria in ageing. Nat Rev Mol Cell Biol. 2016; 17, 308-21.
CrossRef
PubMed PubMedCentralBlacker T S, Duchen M R Investigating mitochondrial redox state using NADH and NADPH autofluorescence. Free Radic Biol Med. 2016;100, 53-65.
CrossRef
PubMed PubMedCentralPescosolido N, Barbato A, Stefanucci A, Buomprisco G. Role of electrophysiology in the early diagnosis and follow-up of diabetic retinopathy. J Diabet Res. 2015; 319692.
CrossRef
PubMed PubMedCentralLoukovaara S, Harju M, Immonen I. Macular blood flow measured by blue-field entoptoscopy and Heidelberg retinal flowmetry: comparison of two techniques in type 1 diabetes women during pregnancy. Acta Ophthalmol. 2009; 87:506-10.
CrossRef
PubMedCoughlin BA, Feenstra DJ, Mohr S. Muller cells and diabetic retinopathy. Vision Res. 2017; 139:93-100.
CrossRef
PubMed PubMedCentralTonade D, Liu H, Palczewski K, Kern TS. Photoreceptor cells produce inflammatory products that contribute to retinal vascular permeability in a mouse model of diabetes. Diabetologia. 2017; 60:2111-20.
CrossRef
PubMed PubMedCentralDu Y, Veenstra A, Palczewski K, Kern TS. Photoreceptor cells are major contributors to diabetes-induced oxidative stress and local inflammation in the retina. Proc Natl Acad Sci USA. 2013;110(41):16586-91.
CrossRef
PubMed PubMedCentralTang J, Kern TS. Inflammation in diabetic retinopathy. Prog Retin Eye Res. 2011; 30:343-58.
CrossRef
PubMed PubMedCentralHotamisligil GS. Foundations of immunometabolism and implications for metabolic health and disease. Immunity. 2017; 47:406-20.
CrossRef
PubMed PubMedCentralvan Niekerk G, Davis T, Patterton HG, Engelbrecht AM. How does inflammation-induced hyperglycemia cause mitochondrial dysfunction in immune cells? Bioessays. 2019; 41:e1800260.
CrossRef
PubMedSchroder S, Palinski W, Schmid-Schonbein GW. Activated monocytes and granulocytes, capillary nonperfusion, and neovascularization in diabetic retinopathy. Am J Pathol. 1991; 139:81-100.Tryggestad JB, Shah RD, Braffett BH, et al. Circulating adhesion molecules and associations with hba1c, hypertension, nephropathy, and retinopathy in the treatment options for type 2 diabetes in adolescent and youth (TODAY) study. Pediatr Diabet. 2020; 21:923-31.
CrossRef
PubMed PubMedCentralLeal EC, Manivannan A, Hosoya K, Terasaki T, CunhaVaz J, Ambrosio AF, et al. Inducible nitric oxide synthase isoform is a key mediator of leukostasis and bloodretinal barrier breakdown in diabetic retinopathy. Invest Ophthalmol Vis Sci. 2007; 48:5257-65.
CrossRef
PubMedMedzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454(7203):428-35.
CrossRef
PubMedXu H, Chen M, Forrester JV. Para-inflammation in the aging retina. Prog Retin Eye Res. 2009;28(5):348-68.
CrossRef
PubMedTang L, Zhang C, Lu L, Tian H, Liu K, Luo D, Qiu Q, Xu GT, Zhang J. Melatonin maintains inner blood-retinal barrier by regulating microglia via inhibition of PI3K/ Akt/Stat3/NF-κB signaling pathways in experimental diabetic retinopathy. Front Immunol. 2022; 13: 831660.
CrossRef
PubMed PubMedCentralWang W, Lo ACY. Diabetic retinopathy: pathophysiology and treatments. Int J Mol Sci. 2018;19:18-16.
CrossRef
PubMed PubMedCentralReichenbach A, Bringmann A. Glia of the human retina. Glia. 2020; 68 (4): 768-96.
CrossRef
PubMedSchmalen A, Lorenz L, Grosche A, et al. Proteomic phenotyping of stimulated Müller cells uncovers profound pro-inflammatory signaling and antigenpresenting capacity. Front. Pharmacol. 2021; 12, 771571.
CrossRef
PubMed PubMedCentralBoss J D, Singh P K, Pandya HK, et al. Assessment of neurotrophins and inflammatory mediators in vitreous of patients with diabetic retinopathy. Invest Ophthalmol Vis Sci. 2017; 58 (12):5594-603.
CrossRef
PubMed PubMedCentralYingying Chen, Qinghong Xia, Yue Zeng, et al. Regulations of retinal inflammation: Focusing on Müller glia. Front Cell Dev Biol. 2022. |  |  |  
    |  |  |  |  |