Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2023; 69(3): 106-114


CURRENT VIEW ON PATHOGENIC MECHANISMS OF DIABETIC RETINOPATHY

I.M. Mikheytseva

    The Fialtov Institute of the Tissue Therapy of the National Academy of Medical Sciences of Ukraine, Odesa, Ukraine
DOI: https://doi.org/10.15407/fz69.03.106


Abstract

Diabetes mellitus (DM) and its complications are an actual problem of modern medicine. This pathology continues to spread throughout the world like a non-infectious epidemic. In this review new data about the role of different cellular mechanisms in forming of diabetic retinopathy (DR), namely, oxidative-nitrosative stress, mitochondrial dysfunction, neurodegeneration and inflammation. A new approach to DR pathogenesis is the primacy of the neurodegenerative changes in the retina vs previously held views of the problem as а microvascular pathology of the eye only. At the moment, hyperglycemia is considered as the main etiological factor of DR. Activation of the oxidation of excess glucose triggers a cascade of reactions with the formation of oxidative and nitrosative stress. Mitochondria are the most sensitive to oxidative-nitrosative organelles in cells of the retina. Hyperglicemia-induced mitochondrial dysfunction, with cellular respiration disruption and increased production of free radicals in neurons of the retina, can promote their further degeneration and DR enhancing. Local inflammation in the retina, which is facilitated in DM, also considered as a new component of DR pathogenesis. In this case, the inflammatory cascade occurs at the molecular level without clinical manifestations of inflammation. The review provides analysis of modern literature data on this mechanism involving in retinal complications of DM. It is emphasized, that retinal inflammation in DM enhances neurodegeneration and promote retinopathy.

Keywords: diabetes mellitus, retina, oxidative-nitrosative stress, mitochondrial dysfunction, neurodegeneration, inflammation.

References

  1. Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, et al. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017; 128: 40-50. CrossRef PubMed
  2. Stitt AW, et al. The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res. 2016; 51:156-86. CrossRef PubMed
  3. Kaestner KH, Powers AC, Naji A, Consortium H, Atkinson MA. NIH Initiative to Improve Understanding of the Pancreas, Islet, and Autoimmunity in Type 1 Diabetes: The Human Pancreas Analysis Program (HPAP). Diabetes. 2019; 68:1394-402. CrossRef PubMed PubMedCentral
  4. Bettini ML, Bettini M. understanding autoimmune diabetes through the prism of the tri-molecular complex. Front Endocrinol (Lausanne). 2017; 8:351. CrossRef PubMed PubMedCentral
  5. Mezza T, Cinti F, Cefalo CMA, Pontecorvi A, Kulkarni RN, Giaccari A. beta-Cell fate in human insulin resistance and type 2 diabetes: A perspective on islet plasticity. Diabetes . 2019; 68:1121-9. CrossRef PubMed PubMedCentral
  6. Braffett BH, Gubitosi-Klug RA, Albers JW, Feldman EL, et al. Risk factors for diabetic peripheral neuropathy and cardiovascular autonomic neuropathy in the diabetes control and complications trial/epidemiology of diabetes interventions and complications (DCCT/EDIC) study. Diabetes. 2020; 69:1000-10. CrossRef PubMed PubMedCentral
  7. Kanter JE, Hsu CC, Bornfeldt KE. Monocytes and macrophages as protagonists in vascular complications of diabetes. Front Cardiovascul Med. 2020; 7:10. CrossRef PubMed PubMedCentral
  8. Spencer BG, Estevez JJ, Liu E, Craig JE, Finnie JW. Pericytes, inflammation, and diabetic retinopathy. Inflammopharmacology. 2020; 28:697-709. CrossRef PubMed
  9. van der Wijk AE, Hughes JM, Klaassen I, Van Noorden CJF, Schlingemann RO. Is leukostasis a crucial step or epiphenomenon in the pathogenesis of diabetic retinopathy? J Leukoc Biol. (2017) 102:993-1001. CrossRef PubMed
  10. Richner M, Ferreira N, Dudele A, Jensen TS, Vaegter CB, Goncalves NP. Functional and structural changes of the blood-nerve-barrier in diabetic neuropathy. Front Neurosci. 2018; 12:1038. CrossRef PubMed PubMedCentral
  11. Sagoo MK, Gnudi L. Diabetic Nephropathy: An Overview. Methods Mol Biol. 2020; 2067:3-7. CrossRef PubMed
  12. Lynch SK, Abràmoff MD. Diabetic retinopathy is a neurodegenerative disorder. Vision Res. 2017; 139: 101-7. CrossRef PubMed PubMedCentral
  13. Jonsson KB, Frydkjaer-Olsen U, Grauslund J. Vascular changes and neurodegeneration in the early stages of diabetic retinopathy: Which comes first? Ophthalmic Res. 2016;56(1):1-9. CrossRef PubMed
  14. Yau JW, Rogers SL KR, Lamoureux EL, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012; 35:556-64. CrossRef PubMed PubMedCentral
  15. Frank RN. A comprehensive review of diabetic retinopathy-clinical aspects diabetic retinopathy. N Engl J Med. 2004;350:48-58. CrossRef PubMed
  16. Wilkinson CP, Ferris FL, Klein RE, Lee PP, Agardh CD, Davis M, Dills D, Kampik A, Pararajasegaram R, Verdaguer JT. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology. 2003;110:1677-82. CrossRef PubMed
  17. Das A, McGuire PG, Rangasamy S Diabetic macular edema: Pathophysiology and novel therapeutic targets. Ophthalmology. 2015; 122 (7): 1375-94. CrossRef PubMed
  18. Anuj Sharma, Deepesh Arora. Role of Inflammation in Diabetic Retinopathy. from Diabetic Eye Disease. Ed. by Giuseppe Lo Giudice. 2021. CrossRef
  19. Hirsch IB, Brownlee M. Beyond hemoglobin A1c--need for additional markers of risk for diabetic microvascular complications. JAMA. 2010;303(22):2291-2. CrossRef PubMed
  20. Klein R, Knudtson MD, Lee KE, Gangnon R, Klein BE. The Wisconsin Epidemiologic Study of Diabetic Retinopathy: XXII the twenty-five-year progression of retinopathy in persons with type 1 diabetes. Ophthalmology. 2008;115(11):1859-68. CrossRef PubMed PubMedCentral
  21. Duh EJ, Sun JK, Stitt AW. Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. JCI Insight. 2017; 2(14): e93751. CrossRef PubMed PubMedCentral
  22. Pop-Busui R, Boulton AJ, Feldman EL, Bril V, et al. Diabetic neuropathy: A Position Statement by the American Diabetes Association. Diabet Care. 2017;40(1):136-54. CrossRef PubMed PubMedCentral
  23. Aristidis V. Rayaz AM. Diabetic Neuropathy: Clinical Management. Humana Press. 2007.
  24. Hudiakova NV, Ivanov NV, Pchelin I Yu, et al. Diabetic neuropathy: molecular mechanisms of development and possibilities for pathogenetic therapy. Juvenis Scientia. 2019; 4:8-12. CrossRef
  25. Younis Ahmad Hajam , Raksha Rani, Shahid Yousuf Ganie, et al. Oxidative stress in human pathology and aging: Molecular mechanisms and perspectives. Cells. 2022, 11, 552. CrossRef PubMed PubMedCentral
  26. Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial ROSinduced ROS release: an update and review. Biochim Biophys Acta. 2006;1757:509-17. CrossRef PubMed
  27. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54:1615-25. CrossRef PubMed
  28. Tien T, Zhang J, Muto T, et al. High glucose induces mitochondrial dysfunction in reyinal Muller cells: Implications for diabetic retinopathy. Invest Ophthalmol Vis Sci. 2017;58:2915-21. CrossRef PubMed PubMedCentral
  29. Masser DR, Otalora L, Clark NW, et al. Functional changes in the neural retina occur in the absence of mitochondrial dysfunction in a rodent model of diabetic retinopathy. J Neurochem. 2017;143:595-608. CrossRef PubMed PubMedCentral
  30. Han WH, Gotzmann J, Kuny S, et al. Modifications in retinal mitochondrial respiration precede Type 2 diabetes and protracted microvascular retinopathy. Invest Ophthalmol Vis Sci. 2017;58:3826-39. CrossRef PubMed
  31. Kowluru RA, Kowluru A, Veluthakal R, et al. TIAM1- RAC1 signalling axis-mediated activation of NADPH oxidase-2 initiates mitochondrial damage in the development of diabetic retinopathy. Diabetologia. 2014;57:1047-56. CrossRef PubMed PubMedCentral
  32. Weidinger A. Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction. Biomolecules. 2015; 5:472-84. CrossRef PubMed PubMedCentral
  33. Ortega AL. Oxidative and nitrosative stress in the metastatic microenvironment. Cancers (Basel). 2010;2 (2):274-304. CrossRef PubMed PubMedCentral
  34. Bauer G. Reactive oxygen and nitrogen species: efficient, selective, and interactive signals during intercellular induction of apoptosis. Anticancer Res. 2000;20:4115-39.
  35. Majima HJ, Indo HP, Suenaga S, et al. Mitochondria as Source of Free Radicals. In: Naito Y, Suematsu M, Yoshikawa T (eds.). Free Radical Biology in Digestive Diseases. Front Gastrointest Res. 2011; 29:12-22. CrossRef
  36. Hiroko P. Indo, et al. A mitochondrial superoxide theory for oxidative stress diseases and aging. J Clin Biochem Nutr. 2015; 56(1): 1-7. CrossRef PubMed PubMedCentral
  37. Sharmelee Selvaraji, Luting Poh, Venkateswaran Natarajan et al. Negative conditioning of mitochondrial dysfunction in age-related neurodegenerative diseases. Cond Med. 2019; 2(1): 30-9.
  38. Ruchkin MP, Markelova EV, Fedyashev GA. Role of neuroproteins in retinal neurodegeneration in diabetic retinopathy. Pacific Med J. 2022;(3):32-5. CrossRef
  39. Lynch SK, Abràmoff MD. Diabetic retinopathy is a neurodegenerative disorder. Vision Res. 2017; 139: 101-7. CrossRef PubMed PubMedCentral
  40. Forrester JV, Kuffova L, Delibegovic M. The role of inflammation in diabetic retinopathy. Front Immunol, 2020. Inflammation.doi:10.3389/fimmu.2020.583687 CrossRef PubMed PubMedCentral
  41. Butler JM, Ding BS. Angiocrine functions of organspecific endothelial cells. Nature. 2016; 529:316-25. CrossRef PubMed PubMedCentral
  42. Lieth E, AJ Gardner Tw Fau-Barber, DA Barber Aj FauAntonetti, DA Antonetti. Retinal neurodegeneration: early pathology in diabetes. Graefes Arch Clin Exp Ophthalmol., 2000; 28 (1): 3-8. CrossRef PubMed
  43. Duh EJ, Sun JK, Stitt AW. Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. JCI Insight. 2017; 2:1-13. CrossRef PubMed PubMedCentral
  44. Shen Nian, Amy C Y Lo, Yajing Mi, et al. Neurovascular unit in diabetic retinopathy: pathophysiological roles and potential therapeutical targets. Eye Vis (Lond). 2021;8(1):15. CrossRef PubMed PubMedCentral
  45. Sokol S, Moskowitz A, Skarf B, Evans R, Molitch M, Senior B. Contrast sensitivity in diabetics with and without background retinopathy. Arch Ophthalmol. 1985;103(1):51-4. CrossRef PubMed
  46. Barber AJ, Lieth E, Khin SA, Antonetti DA, Buchanan AG, Gardner TW. Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest. 1998;102(4):783-91. CrossRef PubMed PubMedCentral
  47. Carrasco E, Hernández C, Miralles A, Huguet P, Farrés J, Simó R. Lower somatostatin expression is an early event in diabetic retinopathy and is associated with retinal neurodegeneration. Diabetes Care. 2007;30(11):2902-08. CrossRef PubMed
  48. van Dijk HW, et al. Selective loss of inner retinal layer thickness in type 1 diabetic patients with minimal diabetic retinopathy. Invest Ophthalmol Vis Sci. 2009;50(7):3404-09. CrossRef PubMed PubMedCentral
  49. van Dijk HW, et al. Decreased retinal ganglion cell layer thickness in patients with type 1 diabetes. Invest Ophthalmol Vis Sci. 2010;51(7):3660-65. CrossRef PubMed PubMedCentral
  50. Elliott H. Sohn, Hille W. van Dijk, Chunhua Jiao, et al. Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. Proc Natl Acad Sci USA. 2016; 113(19): E2655-64. CrossRef PubMed PubMedCentral
  51. Gardner TW, Davila JR The neurovascular unit and the pathophysiologic basis of diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2017; 255(1);1-6. CrossRef PubMed PubMedCentral
  52. Das PG, McGuire S Rangasamy. Diabetic macular edema: Pathophysiology and novel therapeutic targets. Ophthalmology, 2015;122 (7):1375-94. CrossRef PubMed
  53. Fang EF, Scheibye-Knudsen M, Chua KF, et al. Nuclear DNA damage signalling to mitochondria in ageing. Nat Rev Mol Cell Biol. 2016; 17, 308-21. CrossRef PubMed PubMedCentral
  54. Blacker T S, Duchen M R Investigating mitochondrial redox state using NADH and NADPH autofluorescence. Free Radic Biol Med. 2016;100, 53-65. CrossRef PubMed PubMedCentral
  55. Pescosolido N, Barbato A, Stefanucci A, Buomprisco G. Role of electrophysiology in the early diagnosis and follow-up of diabetic retinopathy. J Diabet Res. 2015; 319692. CrossRef PubMed PubMedCentral
  56. Loukovaara S, Harju M, Immonen I. Macular blood flow measured by blue-field entoptoscopy and Heidelberg retinal flowmetry: comparison of two techniques in type 1 diabetes women during pregnancy. Acta Ophthalmol. 2009; 87:506-10. CrossRef PubMed
  57. Coughlin BA, Feenstra DJ, Mohr S. Muller cells and diabetic retinopathy. Vision Res. 2017; 139:93-100. CrossRef PubMed PubMedCentral
  58. Tonade D, Liu H, Palczewski K, Kern TS. Photoreceptor cells produce inflammatory products that contribute to retinal vascular permeability in a mouse model of diabetes. Diabetologia. 2017; 60:2111-20. CrossRef PubMed PubMedCentral
  59. Du Y, Veenstra A, Palczewski K, Kern TS. Photoreceptor cells are major contributors to diabetes-induced oxidative stress and local inflammation in the retina. Proc Natl Acad Sci USA. 2013;110(41):16586-91. CrossRef PubMed PubMedCentral
  60. Tang J, Kern TS. Inflammation in diabetic retinopathy. Prog Retin Eye Res. 2011; 30:343-58. CrossRef PubMed PubMedCentral
  61. Hotamisligil GS. Foundations of immunometabolism and implications for metabolic health and disease. Immunity. 2017; 47:406-20. CrossRef PubMed PubMedCentral
  62. van Niekerk G, Davis T, Patterton HG, Engelbrecht AM. How does inflammation-induced hyperglycemia cause mitochondrial dysfunction in immune cells? Bioessays. 2019; 41:e1800260. CrossRef PubMed
  63. Schroder S, Palinski W, Schmid-Schonbein GW. Activated monocytes and granulocytes, capillary nonperfusion, and neovascularization in diabetic retinopathy. Am J Pathol. 1991; 139:81-100.
  64. Tryggestad JB, Shah RD, Braffett BH, et al. Circulating adhesion molecules and associations with hba1c, hypertension, nephropathy, and retinopathy in the treatment options for type 2 diabetes in adolescent and youth (TODAY) study. Pediatr Diabet. 2020; 21:923-31. CrossRef PubMed PubMedCentral
  65. Leal EC, Manivannan A, Hosoya K, Terasaki T, CunhaVaz J, Ambrosio AF, et al. Inducible nitric oxide synthase isoform is a key mediator of leukostasis and bloodretinal barrier breakdown in diabetic retinopathy. Invest Ophthalmol Vis Sci. 2007; 48:5257-65. CrossRef PubMed
  66. Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454(7203):428-35. CrossRef PubMed
  67. Xu H, Chen M, Forrester JV. Para-inflammation in the aging retina. Prog Retin Eye Res. 2009;28(5):348-68. CrossRef PubMed
  68. Tang L, Zhang C, Lu L, Tian H, Liu K, Luo D, Qiu Q, Xu GT, Zhang J. Melatonin maintains inner blood-retinal barrier by regulating microglia via inhibition of PI3K/ Akt/Stat3/NF-κB signaling pathways in experimental diabetic retinopathy. Front Immunol. 2022; 13: 831660. CrossRef PubMed PubMedCentral
  69. Wang W, Lo ACY. Diabetic retinopathy: pathophysiology and treatments. Int J Mol Sci. 2018;19:18-16. CrossRef PubMed PubMedCentral
  70. Reichenbach A, Bringmann A. Glia of the human retina. Glia. 2020; 68 (4): 768-96. CrossRef PubMed
  71. Schmalen A, Lorenz L, Grosche A, et al. Proteomic phenotyping of stimulated Müller cells uncovers profound pro-inflammatory signaling and antigenpresenting capacity. Front. Pharmacol. 2021; 12, 771571. CrossRef PubMed PubMedCentral
  72. Boss J D, Singh P K, Pandya HK, et al. Assessment of neurotrophins and inflammatory mediators in vitreous of patients with diabetic retinopathy. Invest Ophthalmol Vis Sci. 2017; 58 (12):5594-603. CrossRef PubMed PubMedCentral
  73. Yingying Chen, Qinghong Xia, Yue Zeng, et al. Regulations of retinal inflammation: Focusing on Müller glia. Front Cell Dev Biol. 2022.

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.