|
|
|
|
CURRENT VIEW ON PATHOGENIC MECHANISMS OF DIABETIC RETINOPATHY
I.M. Mikheytseva
The Fialtov Institute of the Tissue Therapy of the National Academy of Medical Sciences of Ukraine, Odesa, Ukraine
DOI: https://doi.org/10.15407/fz69.03.106
Abstract
Diabetes mellitus (DM) and its complications are an actual
problem of modern medicine. This pathology continues to
spread throughout the world like a non-infectious epidemic.
In this review new data about the role of different cellular
mechanisms in forming of diabetic retinopathy (DR), namely,
oxidative-nitrosative stress, mitochondrial dysfunction, neurodegeneration and inflammation. A new approach to DR pathogenesis is the primacy of the neurodegenerative changes in the
retina vs previously held views of the problem as а microvascular pathology of the eye only. At the moment, hyperglycemia
is considered as the main etiological factor of DR. Activation
of the oxidation of excess glucose triggers a cascade of reactions with the formation of oxidative and nitrosative stress.
Mitochondria are the most sensitive to oxidative-nitrosative
organelles in cells of the retina. Hyperglicemia-induced mitochondrial dysfunction, with cellular respiration disruption and
increased production of free radicals in neurons of the retina,
can promote their further degeneration and DR enhancing. Local inflammation in the retina, which is facilitated in DM, also
considered as a new component of DR pathogenesis. In this
case, the inflammatory cascade occurs at the molecular level
without clinical manifestations of inflammation. The review
provides analysis of modern literature data on this mechanism
involving in retinal complications of DM. It is emphasized,
that retinal inflammation in DM enhances neurodegeneration
and promote retinopathy.
Keywords:
diabetes mellitus, retina, oxidative-nitrosative stress, mitochondrial dysfunction, neurodegeneration, inflammation.
References
- Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, et al. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017; 128: 40-50.
CrossRef
PubMed
- Stitt AW, et al. The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res. 2016; 51:156-86.
CrossRef
PubMed
- Kaestner KH, Powers AC, Naji A, Consortium H, Atkinson MA. NIH Initiative to Improve Understanding of the Pancreas, Islet, and Autoimmunity in Type 1 Diabetes: The Human Pancreas Analysis Program (HPAP). Diabetes. 2019; 68:1394-402.
CrossRef
PubMed PubMedCentral
- Bettini ML, Bettini M. understanding autoimmune diabetes through the prism of the tri-molecular complex. Front Endocrinol (Lausanne). 2017; 8:351.
CrossRef
PubMed PubMedCentral
- Mezza T, Cinti F, Cefalo CMA, Pontecorvi A, Kulkarni RN, Giaccari A. beta-Cell fate in human insulin resistance and type 2 diabetes: A perspective on islet plasticity. Diabetes . 2019; 68:1121-9.
CrossRef
PubMed PubMedCentral
- Braffett BH, Gubitosi-Klug RA, Albers JW, Feldman EL, et al. Risk factors for diabetic peripheral neuropathy and cardiovascular autonomic neuropathy in the diabetes control and complications trial/epidemiology of diabetes interventions and complications (DCCT/EDIC) study. Diabetes. 2020; 69:1000-10.
CrossRef
PubMed PubMedCentral
- Kanter JE, Hsu CC, Bornfeldt KE. Monocytes and macrophages as protagonists in vascular complications of diabetes. Front Cardiovascul Med. 2020; 7:10.
CrossRef
PubMed PubMedCentral
- Spencer BG, Estevez JJ, Liu E, Craig JE, Finnie JW. Pericytes, inflammation, and diabetic retinopathy. Inflammopharmacology. 2020; 28:697-709.
CrossRef
PubMed
- van der Wijk AE, Hughes JM, Klaassen I, Van Noorden CJF, Schlingemann RO. Is leukostasis a crucial step or epiphenomenon in the pathogenesis of diabetic retinopathy? J Leukoc Biol. (2017) 102:993-1001.
CrossRef
PubMed
- Richner M, Ferreira N, Dudele A, Jensen TS, Vaegter CB, Goncalves NP. Functional and structural changes of the blood-nerve-barrier in diabetic neuropathy. Front Neurosci. 2018; 12:1038.
CrossRef
PubMed PubMedCentral
- Sagoo MK, Gnudi L. Diabetic Nephropathy: An Overview. Methods Mol Biol. 2020; 2067:3-7.
CrossRef
PubMed
- Lynch SK, Abràmoff MD. Diabetic retinopathy is a neurodegenerative disorder. Vision Res. 2017; 139: 101-7.
CrossRef
PubMed PubMedCentral
- Jonsson KB, Frydkjaer-Olsen U, Grauslund J. Vascular changes and neurodegeneration in the early stages of diabetic retinopathy: Which comes first? Ophthalmic Res. 2016;56(1):1-9.
CrossRef
PubMed
- Yau JW, Rogers SL KR, Lamoureux EL, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012; 35:556-64.
CrossRef
PubMed PubMedCentral
- Frank RN. A comprehensive review of diabetic retinopathy-clinical aspects diabetic retinopathy. N Engl J Med. 2004;350:48-58.
CrossRef
PubMed
- Wilkinson CP, Ferris FL, Klein RE, Lee PP, Agardh CD, Davis M, Dills D, Kampik A, Pararajasegaram R, Verdaguer JT. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology. 2003;110:1677-82.
CrossRef
PubMed
- Das A, McGuire PG, Rangasamy S Diabetic macular edema: Pathophysiology and novel therapeutic targets. Ophthalmology. 2015; 122 (7): 1375-94.
CrossRef
PubMed
- Anuj Sharma, Deepesh Arora. Role of Inflammation in Diabetic Retinopathy. from Diabetic Eye Disease. Ed. by Giuseppe Lo Giudice. 2021.
CrossRef
- Hirsch IB, Brownlee M. Beyond hemoglobin A1c--need for additional markers of risk for diabetic microvascular complications. JAMA. 2010;303(22):2291-2.
CrossRef
PubMed
- Klein R, Knudtson MD, Lee KE, Gangnon R, Klein BE. The Wisconsin Epidemiologic Study of Diabetic Retinopathy: XXII the twenty-five-year progression of retinopathy in persons with type 1 diabetes. Ophthalmology. 2008;115(11):1859-68.
CrossRef
PubMed PubMedCentral
- Duh EJ, Sun JK, Stitt AW. Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. JCI Insight. 2017; 2(14): e93751.
CrossRef
PubMed PubMedCentral
- Pop-Busui R, Boulton AJ, Feldman EL, Bril V, et al. Diabetic neuropathy: A Position Statement by the American Diabetes Association. Diabet Care. 2017;40(1):136-54.
CrossRef
PubMed PubMedCentral
- Aristidis V. Rayaz AM. Diabetic Neuropathy: Clinical Management. Humana Press. 2007.
- Hudiakova NV, Ivanov NV, Pchelin I Yu, et al. Diabetic neuropathy: molecular mechanisms of development and possibilities for pathogenetic therapy. Juvenis Scientia. 2019; 4:8-12.
CrossRef
- Younis Ahmad Hajam , Raksha Rani, Shahid Yousuf Ganie, et al. Oxidative stress in human pathology and aging: Molecular mechanisms and perspectives. Cells. 2022, 11, 552.
CrossRef
PubMed PubMedCentral
- Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial ROSinduced ROS release: an update and review. Biochim Biophys Acta. 2006;1757:509-17.
CrossRef
PubMed
- Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54:1615-25.
CrossRef
PubMed
- Tien T, Zhang J, Muto T, et al. High glucose induces mitochondrial dysfunction in reyinal Muller cells: Implications for diabetic retinopathy. Invest Ophthalmol Vis Sci. 2017;58:2915-21.
CrossRef
PubMed PubMedCentral
- Masser DR, Otalora L, Clark NW, et al. Functional changes in the neural retina occur in the absence of mitochondrial dysfunction in a rodent model of diabetic retinopathy. J Neurochem. 2017;143:595-608.
CrossRef
PubMed PubMedCentral
- Han WH, Gotzmann J, Kuny S, et al. Modifications in retinal mitochondrial respiration precede Type 2 diabetes and protracted microvascular retinopathy. Invest Ophthalmol Vis Sci. 2017;58:3826-39.
CrossRef
PubMed
- Kowluru RA, Kowluru A, Veluthakal R, et al. TIAM1- RAC1 signalling axis-mediated activation of NADPH oxidase-2 initiates mitochondrial damage in the development of diabetic retinopathy. Diabetologia. 2014;57:1047-56.
CrossRef
PubMed PubMedCentral
- Weidinger A. Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction. Biomolecules. 2015; 5:472-84.
CrossRef
PubMed PubMedCentral
- Ortega AL. Oxidative and nitrosative stress in the metastatic microenvironment. Cancers (Basel). 2010;2 (2):274-304.
CrossRef
PubMed PubMedCentral
- Bauer G. Reactive oxygen and nitrogen species: efficient, selective, and interactive signals during intercellular induction of apoptosis. Anticancer Res. 2000;20:4115-39.
- Majima HJ, Indo HP, Suenaga S, et al. Mitochondria as Source of Free Radicals. In: Naito Y, Suematsu M, Yoshikawa T (eds.). Free Radical Biology in Digestive Diseases. Front Gastrointest Res. 2011; 29:12-22.
CrossRef
- Hiroko P. Indo, et al. A mitochondrial superoxide theory for oxidative stress diseases and aging. J Clin Biochem Nutr. 2015; 56(1): 1-7.
CrossRef
PubMed PubMedCentral
- Sharmelee Selvaraji, Luting Poh, Venkateswaran Natarajan et al. Negative conditioning of mitochondrial dysfunction in age-related neurodegenerative diseases. Cond Med. 2019; 2(1): 30-9.
- Ruchkin MP, Markelova EV, Fedyashev GA. Role of neuroproteins in retinal neurodegeneration in diabetic retinopathy. Pacific Med J. 2022;(3):32-5.
CrossRef
- Lynch SK, Abràmoff MD. Diabetic retinopathy is a neurodegenerative disorder. Vision Res. 2017; 139: 101-7.
CrossRef
PubMed PubMedCentral
Forrester JV, Kuffova L, Delibegovic M. The role of inflammation in diabetic retinopathy. Front Immunol, 2020. Inflammation.doi:10.3389/fimmu.2020.583687
CrossRef
PubMed PubMedCentral
- Butler JM, Ding BS. Angiocrine functions of organspecific endothelial cells. Nature. 2016; 529:316-25.
CrossRef
PubMed PubMedCentral
- Lieth E, AJ Gardner Tw Fau-Barber, DA Barber Aj FauAntonetti, DA Antonetti. Retinal neurodegeneration: early pathology in diabetes. Graefes Arch Clin Exp Ophthalmol., 2000; 28 (1): 3-8.
CrossRef
PubMed
- Duh EJ, Sun JK, Stitt AW. Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. JCI Insight. 2017; 2:1-13.
CrossRef
PubMed PubMedCentral
- Shen Nian, Amy C Y Lo, Yajing Mi, et al. Neurovascular unit in diabetic retinopathy: pathophysiological roles and potential therapeutical targets. Eye Vis (Lond). 2021;8(1):15.
CrossRef
PubMed PubMedCentral
- Sokol S, Moskowitz A, Skarf B, Evans R, Molitch M, Senior B. Contrast sensitivity in diabetics with and without background retinopathy. Arch Ophthalmol. 1985;103(1):51-4.
CrossRef
PubMed
- Barber AJ, Lieth E, Khin SA, Antonetti DA, Buchanan AG, Gardner TW. Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest. 1998;102(4):783-91.
CrossRef
PubMed PubMedCentral
- Carrasco E, Hernández C, Miralles A, Huguet P, Farrés J, Simó R. Lower somatostatin expression is an early event in diabetic retinopathy and is associated with retinal neurodegeneration. Diabetes Care. 2007;30(11):2902-08.
CrossRef
PubMed
- van Dijk HW, et al. Selective loss of inner retinal layer thickness in type 1 diabetic patients with minimal diabetic retinopathy. Invest Ophthalmol Vis Sci. 2009;50(7):3404-09.
CrossRef
PubMed PubMedCentral
- van Dijk HW, et al. Decreased retinal ganglion cell layer thickness in patients with type 1 diabetes. Invest Ophthalmol Vis Sci. 2010;51(7):3660-65.
CrossRef
PubMed PubMedCentral
- Elliott H. Sohn, Hille W. van Dijk, Chunhua Jiao, et al. Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. Proc Natl Acad Sci USA. 2016; 113(19): E2655-64.
CrossRef
PubMed PubMedCentral
- Gardner TW, Davila JR The neurovascular unit and the pathophysiologic basis of diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2017; 255(1);1-6.
CrossRef
PubMed PubMedCentral
- Das PG, McGuire S Rangasamy. Diabetic macular edema: Pathophysiology and novel therapeutic targets. Ophthalmology, 2015;122 (7):1375-94.
CrossRef
PubMed
- Fang EF, Scheibye-Knudsen M, Chua KF, et al. Nuclear DNA damage signalling to mitochondria in ageing. Nat Rev Mol Cell Biol. 2016; 17, 308-21.
CrossRef
PubMed PubMedCentral
- Blacker T S, Duchen M R Investigating mitochondrial redox state using NADH and NADPH autofluorescence. Free Radic Biol Med. 2016;100, 53-65.
CrossRef
PubMed PubMedCentral
- Pescosolido N, Barbato A, Stefanucci A, Buomprisco G. Role of electrophysiology in the early diagnosis and follow-up of diabetic retinopathy. J Diabet Res. 2015; 319692.
CrossRef
PubMed PubMedCentral
- Loukovaara S, Harju M, Immonen I. Macular blood flow measured by blue-field entoptoscopy and Heidelberg retinal flowmetry: comparison of two techniques in type 1 diabetes women during pregnancy. Acta Ophthalmol. 2009; 87:506-10.
CrossRef
PubMed
- Coughlin BA, Feenstra DJ, Mohr S. Muller cells and diabetic retinopathy. Vision Res. 2017; 139:93-100.
CrossRef
PubMed PubMedCentral
- Tonade D, Liu H, Palczewski K, Kern TS. Photoreceptor cells produce inflammatory products that contribute to retinal vascular permeability in a mouse model of diabetes. Diabetologia. 2017; 60:2111-20.
CrossRef
PubMed PubMedCentral
- Du Y, Veenstra A, Palczewski K, Kern TS. Photoreceptor cells are major contributors to diabetes-induced oxidative stress and local inflammation in the retina. Proc Natl Acad Sci USA. 2013;110(41):16586-91.
CrossRef
PubMed PubMedCentral
- Tang J, Kern TS. Inflammation in diabetic retinopathy. Prog Retin Eye Res. 2011; 30:343-58.
CrossRef
PubMed PubMedCentral
- Hotamisligil GS. Foundations of immunometabolism and implications for metabolic health and disease. Immunity. 2017; 47:406-20.
CrossRef
PubMed PubMedCentral
- van Niekerk G, Davis T, Patterton HG, Engelbrecht AM. How does inflammation-induced hyperglycemia cause mitochondrial dysfunction in immune cells? Bioessays. 2019; 41:e1800260.
CrossRef
PubMed
- Schroder S, Palinski W, Schmid-Schonbein GW. Activated monocytes and granulocytes, capillary nonperfusion, and neovascularization in diabetic retinopathy. Am J Pathol. 1991; 139:81-100.
- Tryggestad JB, Shah RD, Braffett BH, et al. Circulating adhesion molecules and associations with hba1c, hypertension, nephropathy, and retinopathy in the treatment options for type 2 diabetes in adolescent and youth (TODAY) study. Pediatr Diabet. 2020; 21:923-31.
CrossRef
PubMed PubMedCentral
- Leal EC, Manivannan A, Hosoya K, Terasaki T, CunhaVaz J, Ambrosio AF, et al. Inducible nitric oxide synthase isoform is a key mediator of leukostasis and bloodretinal barrier breakdown in diabetic retinopathy. Invest Ophthalmol Vis Sci. 2007; 48:5257-65.
CrossRef
PubMed
- Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454(7203):428-35.
CrossRef
PubMed
- Xu H, Chen M, Forrester JV. Para-inflammation in the aging retina. Prog Retin Eye Res. 2009;28(5):348-68.
CrossRef
PubMed
- Tang L, Zhang C, Lu L, Tian H, Liu K, Luo D, Qiu Q, Xu GT, Zhang J. Melatonin maintains inner blood-retinal barrier by regulating microglia via inhibition of PI3K/ Akt/Stat3/NF-κB signaling pathways in experimental diabetic retinopathy. Front Immunol. 2022; 13: 831660.
CrossRef
PubMed PubMedCentral
- Wang W, Lo ACY. Diabetic retinopathy: pathophysiology and treatments. Int J Mol Sci. 2018;19:18-16.
CrossRef
PubMed PubMedCentral
- Reichenbach A, Bringmann A. Glia of the human retina. Glia. 2020; 68 (4): 768-96.
CrossRef
PubMed
- Schmalen A, Lorenz L, Grosche A, et al. Proteomic phenotyping of stimulated Müller cells uncovers profound pro-inflammatory signaling and antigenpresenting capacity. Front. Pharmacol. 2021; 12, 771571.
CrossRef
PubMed PubMedCentral
- Boss J D, Singh P K, Pandya HK, et al. Assessment of neurotrophins and inflammatory mediators in vitreous of patients with diabetic retinopathy. Invest Ophthalmol Vis Sci. 2017; 58 (12):5594-603.
CrossRef
PubMed PubMedCentral
- Yingying Chen, Qinghong Xia, Yue Zeng, et al. Regulations of retinal inflammation: Focusing on Müller glia. Front Cell Dev Biol. 2022.
|
|
|
|
|
|
|