Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2023; 69(2): 3-10


А.V. Pisaruk1, V.B. Shatilo1, I.A. Antoniuk-Shcheglova1, S.S. Naskalova1, O.V. Bondarenko1, V.P. Chyzhova1, V.V. Shatilo2, L.G. Polyagushko2

  1. D.F. Chebotarev Institute of Gerontology NAMS of Ukraine, Kyiv, Ukraine
  2. Ihor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine


The purpose of this study is to develop methods for determining the biological age (BA) and the pace of human aging based on anthropometric and biochemical laboratory biomarkers, comparing the accuracy of BA determination using regression and neural network analysis. In 735 practically healthy people aged from 20 to 79, we determined the blood plasma concentrations of glucose and insulin and the blood serum concentrations of total cholesterol, cholesterol of high, low and very-low density lipoproteins, triglycerides, urea, creatinine, transaminases, and alkaline phosphatase. Also, we conducted anthropometric measurements and a standard oral glucose tolerance test and calculated the HOMA index. Age recognition was carried out using regression and neural network analysis. The multiple regression equation, which connects the examinees age with their biochemical laboratory parameters, allows to calculate the metabolic age of a person with an absolute error of 6.92 years. This accuracy is sufficient to reveal people at risk of accelerated aging. The use of a neural network algorithm with deep learning allows to determine the metabolic age with an error of 4.57 years, which is sufficient to distinguish between physiological and accelerated aging. The use of a neural network algorithm with deep learning increases the accuracy of determining a person’s metabolic age, the error of its determination is reduced by 40%.

Keywords: biological age; anthropometric and biochemical biomarkers; regression and neural network models.


  1. Korkushko OV, Shatilo VB. Accelerated aging and its prevention. Bukovyn Med Bull. 2009;13(4):153-8. [Ukrainian].
  2. Cevenin EI, Invidia L, Lescai F, Salvioli S, Tieri P, Castellani G, Franceschi C. Human models of aging and longevity. Exp Opin Biol Ther. 2008;8(9): 1393-405. CrossRef PubMed
  3. Mitnitski AB, Graham JE, Mogilner AJ, Rockwood K. Frailty, fitness and late-life mortality in relation to chronological and biological age. BMC Geriatr. 2002 Feb 27;2:1. CrossRef PubMed PubMedCentral
  4. Morgan E. Modeling the rate of senescence: can estimated biological age predict mortality more accurately than chronological age? J Gerontol A Biol Sci Med Sci. 2013;68(6):667-74. CrossRef PubMed PubMedCentral
  5. Salthouse T. Aging and measures of processing speed. Biol Psychol. 2000;54(1):35-54. CrossRef PubMed
  6. Bürkle A, Moreno-Villanueva M, Bernhard J, Blasco M, Zondag G, Hoeijmakers JH, et al. MARK-AGE biomarkers of ageing. Mech Ageing Dev. 2015 Nov;151:2-12. CrossRef PubMed
  7. Cardoso AL, Fernandes A, Aguilar-Pimentel JA, de Angelis MH, Guedes JR, Brito MA, et al. Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev. 2018 Nov;47:214-77. CrossRef PubMed
  8. Moreno-Villanueva M, Capri M, Breusing N, Siepelmeyer A, Sevini F, Ghezzo A, de Craen AJ, Hervonen A, Hurme M, Schön C, Grune T, Franceschi C, Bürkle A. MARKAGE standard operating procedures (SOPs): A successful effort. Mech Ageing Dev. 2015 Nov;151:18-25. CrossRef PubMed
  9. Xia X, Chen W, McDermott J, Han JJ. Molecular and phenotypic biomarkers of aging. F1000Res. 2017 Jun 9;6:860. CrossRef PubMed PubMedCentral
  10. Aykroyd RG, Lucy D, Pollard AM, Solheim T. Technical note: regression analysis in adult age estimation. Am J Phys Antropol. 1997;104:259-65. CrossRef
  11. Jia L, Zhang W, Chen X. Common methods of biological age estimation. Clin Interv Aging. 2017;12:759-72. CrossRef PubMed PubMedCentral
  12. Krøll J, Saxtrup O. On the use of regression analysis for the estimation of human biological age. Biogerontology. 2000;1:363-68. CrossRef PubMed
  13. Mamoshina P, Vieira A, Putin E, Zhavoronkov A. Applications of deep learning in biomedicine. Mol Pharm. 2016;13(5):1445-54. CrossRef PubMed
  14. Caballero FF, Soulis G, Engchuan W, Sánchez-Niubó A, Arndt H, Ayuso-Mateos JL, Haro JM, Chatterji S, Panagiotakos DB. Advanced analytical methodologies for measuring healthy ageing and its determinants, using factor analysis and machine learning techniques: the ATHLOS project. Sci Rep. 2017 Mar 10;7:43955. CrossRef PubMed PubMedCentral
  15. Cole JH, Franke K, Cherbuin N. Quantification of the biological age of the brain using neuroimaging. In: Biomarkers of Human Aging. Moskalev A (ed.). Switzerland: Springer; 2019. p. 293-328. CrossRef
  16. Putin E, Mamoshina P, Aliper A, Korzinkin M, Moskalev A, Kolosov A, Ostrovskiy A, Cantor C, Vijg J, Zhavoronkov A. Deep biomarkers of human aging: Application of deep neural networks to biomarker development. Aging (Albany NY). 2016 May;8(5):1021-33. CrossRef PubMed PubMedCentral
  17. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: A simple way to prevent neural networks from overfitting. J Machine Learn Res. 2014;15(56):1929-58.
  18. Korkushko OV, Pisaruk AV, Chyzhova VP. Estimation of human metabolic age using regression and neural network. Zaporozh Med J. 2021;23(1):60-64. CrossRef

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.