EVALUATION OF THE EFFICIENCY OF THE NEUROPROTECTIVE DRUGS AFTER PRENATAL HYPOXIA
I.F. Belenichev1, O.G. Aliyeva1, L.M. Gunina2, N.V. Bukhtiyarova1
- Zaporizhzhia State Medical University, Ukraine
- National University of Physical Education and Sport of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz69.01.043
Abstract
We studied the effect of angiolin, thiotriazoline, tamoxifen,
glutaredoxin, cerebrocurin, mildronate, nicomex, L-arginine,
HSF-1, and the reference drug piracetam on molecular markers
of neurodestruction/neuroprotection in a model of chronic
hemic prenatal hypoxia (PH) for experimentally substantiate
the prospects for further study of these drugs as components
of complex treatment of central nervous system damage at
prenatal hypoxic. The concentration of HSP70, metalloproteinase-8 (MPP-8), and nitrotyrosine in the blood plasma of rats on
days 30 and 60 after PH was studied by enzyme immunoassay.
It has been established that chronic PH leads to an increase
in the concentration of nitrotyrosine, MMP8, and inhibition
of the synthesis of HSP70, which indicates a violation of the
mechanisms of neuroprotection/neurodestruction processes
regulation. Course injections of the studied preparations led
to an increase in the level of HSP70 in the blood serum of
animals and a decrease in the concentration of nitrotyrosine
and MPP-8 with a prolonged effect. Cerebrocurin (150 mg/
kg), Angiolin (50 mg/kg), HSF-1 (50 mg/kg) and Glutaredoxin
(200 μg/kg) most actively affected the parameters of the studied
molecular markers, so they can be considered as promising
neuroprotective agents means in complex therapy after PH.
Keywords:
experimental prenatal hypoxia; central nervous system; neuroprotection; HSP70; HSP70 modulators.
References
- Li B, Concepcion K, Meng X, Zhang L. Brain-immune interactions in perinatal hypoxic-ischemic brain injury. Neurobiology. 2017;159:50-68.
CrossRef
PubMed PubMedCentral
- Zhang X, Peng K, ZhangX. The function of the NMDA receptor in hypoxic-ischemic encephalopathy. Front Neurosci. 2020;14:567-665.
CrossRef
PubMed PubMedCentral
- Zhao M, Zhu P, Fujino M, Zhuang J, Guo H, Sheikh IA, et al. Oxidative stress in hypoxic-ischemic encephalopathy: molecular mechanisms and therapeutic strategies. Int J Mol Sci. 2016;17(12):2078.
CrossRef
PubMed PubMedCentral
- Mutinati M, Pantaleo M, Roncetti M, Piccinno M, Rizzo A, Sciorsci RL. Oxidative stress in neonatology. A review. Report Domest Anim. 2014;49:7-16.
CrossRef
PubMed
- Sazontova TG, Anchishkina NA, Zhukova, AG, Bedareva IV, Pylaeva EA, Kriventsova NA, et al. The role of reactive oxygen species and redox signaling in adaptation to changes in oxygen content. Physiol J. 2008; 54(2): 18-32.
- Belenichev IF, Gorbacheva SV, Demchenko AV, Bukhtiyarova NV. The thioldisulfide balance and the nitric oxide system in the brain tissue of rats' subjected to experimental acute impraiment of cerebral blood flow: the therapeutic effects of nootropic drugs. Neurochem J. 2014;1(8):24-7.
CrossRef
- Trnski S, Nikolić B, Ilic K, Drlje M, Bobic-Rasonja M, Darmopil S, et al. The signature of moderate perinatal hypoxia on cortical organization and behavior: altered PNN-parvalbumin interneuron connectivity of the cingulate circuitries. Front Cell Dev Biol. 2022;10:810-980.
CrossRef
PubMed PubMedCentral
- Belenichev IF, Mazur IA, Kucherenko LI, Nagornaya EA, Gorbacheva SV, Bidnenko AS. The molecular and ultrastructural aspects of the formation of mitochondrial dysfunction in the modeling of chronic cerebral ischemia: The mitoprotective effects of Angiolin. Neurochem J. 2016;10 (2):131-6.
CrossRef
- Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014;24(10):R453-62.
CrossRef
PubMed PubMedCentral
- Burlaka BS, Belenichev IF, Ryzhenko OI, Ryzhenko VP, Aliyeva OG, Makyeyeva LV, et al. The effect of intranasal administration of an IL-1b antagonist (RAIL) on the state of the nitroxydergic system of the brain during modeling of acute cerebrovascular accident. Pharmacia. 2021;8(68):665-70.
CrossRef
- Gonchar OA, Mankovska IN. Mitochondrial thiol-disulfide system under acute hypoxia and hypoxic-hyperoxic adaptation. Ukr Biochem J. 2014;1(86):93-100.
CrossRef
- Chekman IS, Belenichev IF, Demchenko AV, Bobrova VI, Gorchakova NA, Kucherenko LI, Bukhtiyarova NV. Nootropics in complex therapy of chronic brain ischemia. Sci Innovat. 2014;10(4):61-75. [Ukrainian].
CrossRef
- Aliyeva OG. The effect of chronic prenatal hypoxia on the postnatal development of the CA1 zone of the rat brain hippocampus. Proceedings of the International scientific conference "New trends and unsolved issues in medicine"; 2022 Jul 29-30; Riga, Latvia: Baltija Publ; 2022;238-42.
CrossRef
- Belenichev IF, Vizir VA, Mamchur VI, Kuryata AV. The place of thiotriazoline in the gallery of modern metabolitotropic drugs. Zaporozh Med J. 2019;21(112):118-28. [Ukrainian].
- Belenichev IF, Odnokoz OV, Pavlov SV, Belenicheva OI, Polyakova EN. The neuroprotective activity of tamoxifen and tibolone during glutathione depletion in vitro. Neurochem J. 2012;6:202-12.
CrossRef
- Pavlov SV, Belenichev IF. Molecular and biochemical aspects of the neuroprotective effect of the selective estrogen receptor modulator tamoxifen in a model of acute cerebral ischemia. Neurochem J. 2014;8(1):28-32.
CrossRef
- Ranjbar K, Nazem F, Nazari A. Effect of exercise training and L-arginine on oxidative stress and left ventricular function in the post-ischemic failing rat heart. Cardiovascul Toxicol. 2016;16(2):122-9.
CrossRef
PubMed
- Khaydarova DK, Khodjyeva DT, Bobokulov GD. Optimization of neuroprotective therapy of ischemic stroke in the acute period. Eur J Mol Clin Med. 2020;7 (3):3720-3.
- Kolomiychenko SO, Chabanovych NB, Solovyan IV, Rozuvan OV. The use of the domestic drug Nikomex to reduce post-narcotic depression. Pract Phys. 2019;8 (1):50-2.
- Berlato DG, Bairros AV. Meldonium: Pharmacological, toxicological, and analytical aspects. Toxicol Res Appl. 2020;4:1-18.
CrossRef
- Baird NA, Turnbull DW, Johnson EA. Induction of the heat shock pathway during hypoxia requires regulation of heat shock factor by hypoxia-inducible factor-1. J Bio Chem. 2007;281(50):38675-81.
CrossRef
PubMed
- Sanossian N, Saver J. Neuroprotection for acute brain ischemia. Stroke prevention and treatment: An evidencebased approach. Cambridge: Cambridge Univ Press; 2020. p. 214-38.
CrossRef
- Winblad B. Piracetam: a review of pharmacological properties and clinical use. CNS Drug Rev. 2005;11:169-82.
CrossRef
PubMed PubMedCentral
- Belenichev, EG Aliyeva, OM Kamyshny, NV Bukhtiyarova, VP Ryzhenko, NO Gorchakova. Pharmacological modulation of endogenous neuroprotection after experimental prenatal hypoxia IF. Neurochem J. 2022;16(1):68-75.
CrossRef
- Kim JY, Barua S, Huang MY, Park J, Yenari MA, Lee JE. Heat shock protein 70 (HSP70) induction: Chaperonotherapy for neuroprotection after brain injury. Cells. 2020;2 (9):2020.
CrossRef
PubMed PubMedCentral
- Tong W, Zhang L. Fetal hypoxia and programming of matrix metalloproteinases. Drug Discovery Today. 2012;17(3-4):124-34.
CrossRef
PubMed PubMedCentral
- Lodge KM, Cowburn AS, Li W, Condliffe AM. The impact of hypoxia on neutrophil degranulation and consequences for the host. Int J Mol Sci. 2020;21(4):1183.
CrossRef
PubMed PubMedCentral
- Keil U, Scherping I, Hauptmann S, Schuessel K, Eckert A, Müller WE. Piracetam improves mitochondrial dysfunction following oxidative stress. Br J Pharmacol. 2006;147(2):199-208.
CrossRef
PubMed PubMedCentral
- Hirfanoglu I, Turkyilmaz C, Turkyilmaz Z, Onal E, Soylemezoglu F, Karabulut R, Atalay Y. Neuroprotective effect of L-arginine in a neonatal rat model of hypoxic-ischemia. Int J Neurosci. 2019;11(129):6794.
CrossRef
PubMed
- Demir D, Bektasoglu PK, Koyuncuoglu T, Kandemir C, Akakınd D, Yüksel M, Çelikoglu E, Yegen BÇ, Gürer B. Neuroprotective effects of mildronate in a rat model of traumatic brain injury. Injury. 2019;10(50):1586-92.
CrossRef
PubMed
|