Purine and lipid metabolism in rats with a rotenone model of Parkinson’s disease under the influence of methanindiazenone
L.Ya. Shtanova1, S.P. Vesеlsky1, P.I. Yanchuk2, O.V. Tsymbalyuk2, V.S. Moskvina1, O.V. Shablykina1, O.F. Moroz4, T.V. Vovkun1, О.V. Kravchenko3, V.P. Khilya1
- Faculty of Chemistry, Taras Shevchenko National University of Kyiv, Ukraine
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Ukraine
- O.O. Bogomolets National Medical University, Kyiv, Ukraine
- Education and Scientific Center “Institute of Biology and Medicine”. Taras Shevchenko National University of Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz68.06.018
Abstract
This study aims to evaluate the effect of methanindiazenone (МD), a new benzodiazepine derivative,
on the levels of purine metabolites and lipids in the blood plasma of rats with rotenone (ROT) induced
Parkinson’s disease (PD). The concentrations of ATP, ADP, AMP, xanthine, hypoxanthine, phospholipids
(PL), cholesterol (CHOL), cholesterol esters (ECHOL), free fatty acids (FFA), and triglycerides (TG)
were quantified in plasma samples by thin-layer chromatography. Our data demonstrate that in rats with
ROT-induced PD the AMP/ATP ratio in plasma increased by 2.5 times compared to the control, and this
indicator returned to normal values under the influence of MD. ROT also increased the concentration of
xanthine and hypoxanthine by 26.7% (Р < 0.001) and 42.4% (Р < 0.001), respectively, compared to the
control. MD restored xanthine concentration to 86.7% of the control level and returned hypoxanthine
concentration to normal values. Besides, ROT reduced the blood plasma concentrations of PL, CHOL,
ECHOL, FFA, TG by 22%, (Р < 0.001), 18% (Р < 0.001), 25% (Р < 0.001), 28% (Р < 0.001), 33% (Р
< 0.001), respectively. Under the influence of MD, such indicators as the blood plasma concentration of
PL, CHOL, FFA returned to control levels. Оur results suggest that MD improves the metabolism of both
purines and lipids in rats with ROT-induced PD.
Keywords:
rotenone; Parkinson’s disease; benzodiazepine derivatives; motor behavior; blood plasma; purines; lipids.
References
- Armstrong MJ, Okun MS. Diagnosis and treatment of Parkinson disease: A review. JAMA. 2020; 323(6):548-60.
CrossRef
PubMed
- Muddapu VR, Dharshini SAP, Chakravarthy VS, Gromiha MM. Neurodegenerative diseases - is metabolic deficiency the root cause? Front. Neurosci. 2020;14:213.
CrossRef
PubMed PubMedCentral
- Bloem BR, Okun MS, Klein C. Parkinson's disease. Lancet. 2021;397(10291):2284-303.
CrossRef
PubMed
- Möhler H, Fritschy JM, Rudolph U. A new benzodiazepine pharmacology. J Pharmacol Exp Ther. 2002;300(1):2-8.
CrossRef
PubMed
- Dauvilliers Y, Schenck CH, Postuma RB, Iranzo A, Luppi P-H, Plazzi G, Montplaisir J, Boeve B. REM sleep behaviour disorder. Nat Rev Dis Primers. 2018;4(1):19.
CrossRef
PubMed
- Fonseca-Fonseca L, Wong-Guerra M, Ramírez-Sánchez J, Montano-Peguero Y, Padrón Yaquis A, Rodríguez A, da Silva V, Costa S, Pardo-Andreu Y. JM-20, a novel hybrid molecule, protects against rotenone-induced neurotoxicity in experimental model of Parkinson's disease. Neurosci Lett. 2019b;690:29-35.
CrossRef
PubMed
- Ana Ortíz de Zárate, Marta Pérez-Torralba, Iñigo Bonet Isidro, Concepción López, Rosa M Claramunt, Diana Martínez-Casanova, Isabel Sánchez-Vera, Jesús Jiménez- González and José Luis Lavandera. 1,5-Benzodiazepin- 2(3H)-ones: In vitro evaluation as antiparkinsonian agents. Antioxidants. 2021;10,1584.
CrossRef
PubMed PubMedCentral
- Xicoy H, Wieringa B, Martens G. The role of lipids in Parkinson's disease. Cells. 2019;8(1):27.
CrossRef
PubMed PubMedCentral
- Lei S, Zavala-Flores L, Garcia-Garcia A, Nandakumar R, Huang Y, Madayiputhiya N, Stanton RC, Dodds ED, Powers R, Franco R. Alterations in energy/ redox metabolism induced by mitochondrial and environmental toxins: a specific role for glucose-6- phosphatedehydrogenase and the pentose phosphate pathway in paraquat toxicity. AC S Chem Biol. 2014; 9(9): 2032-48.
CrossRef
PubMed PubMedCentral
- Xiaoxue Fu, Yu Wang, Xiaofeng He , Hongyu Li , Hong Liu and Xiangyang Zhan Fu. A systematic review and meta-analysis of serum cholesterol and triglyceride levels in patients with Parkinson's disease. Lipids Health Disease. 2020;19:97.
CrossRef
PubMed PubMedCentral
- Xue Hong, Wenting Guo, Shanshan Li. Lower blood lipid level is associated with the occurrence of Parkinson's disease: A meta-analysis and systematic review. Int J Clin Pract. 2022;9773038.
CrossRef
PubMed PubMedCentral
- Hu G, Antikainen R, Jousilahti P, Kivipelto M, Tuomilehto J. Total cholesterol and the risk of Parkinson disease. Neurlogy. 2008;70(21):1972-79.
CrossRef
PubMed
- Shtanova LYa, Yanchuk PI, Veselsky SP, Tsymbalyuk OV, Vovkun TV, Moskvina VS, Shablykina OV, Bogza SL, Baban VN, Kravchenko AA, Khilya VP. Diazepinone effect on liver tissue respiration and serum lipid content in rats with a rotenone model of Parkinson's disease. Ukr Biochem J. 2020;92, Issue 6:85-94.
- Shtanova LYa, Yanchuk PI, Veselsky SP, Tsymbalyuk OV, Vovkun TV, Moskvina VS, Shablykina OV, Kravchenko AA, Baban VN, Khilya VP. Corrective effects of benzodiazepine derivative - diazepinone on purine and lipid metabolism in the liver of rats with Parkinson's disease. Fiziol Zh. 2021;67(4):64-75.
CrossRef
- Shablykina O, Krekhova O, Konovalenko A, Moskvina V, Khilya V. Interaction of 3-pyridyl and 3-(imidazo[1,2-a] pyridin-2-yl) isocoumarins with hydrazine. Dopov Nac Akad Nauk Ukr. 2018;(12):71-8.
CrossRef
- Zeng X, Geng W, Jia J. Neurotoxin induced animal models of Parkinson disease: Pathogenic mechanism and assessment. ASN Neuro. 2018;10:1759091418777438.
CrossRef
PubMed PubMedCentral
- Vovkun TV, Yanchuk PI, Shtanova LYa, Veselsky SP, Filimonova NB, Komarov IV. Corvitin modulates the content of lipids in rat liver bile. Ukr Biochem J. 2019; 91(6):112-21.
CrossRef
- Maidanyuk A, Imedadze S. Determination of the adenine series components by densitometry of chromatograms in ultraviolet light. Bull Kyiv National Taras Shevchenko Univ. 2004;42-43:2-13 [Ukrainian].
- Angeline MS, Chaterjee P, Anand K, Ambasta RK, Kumar P. Rotenone-induced parkinsonism elicits behavioral impairments and differential expression of parkin, heat shock proteins and caspases in the rat. Neuroscience. 2012:291-301.
CrossRef
PubMed
- Cunnane SC, Trushina E, Morland C, Prigione A, Casadesus G, Andrews ZB, Beal MF, Bergersen LH, Brinton RD, de la Monte S, et al. Brain energy rescue: An emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov. 2020;19:609-33.
CrossRef
PubMed PubMedCentral
- Milane L, Trivedi M, Singh A, Talekar M, Amiji M. Mitochondrial biology, targets, and drug delivery. J Contr Release. 2015;207:40-58.
CrossRef
PubMed
- Xu J, Minobe E, Kameyama M. Ca2+ dyshomeostasis links risk factors to neurodegeneration in Parkinson's disease. Front Cell Neurosci. 2022;16: 867385. Published online 2022.
CrossRef
PubMed PubMedCentral
- Grünewald A, Kumar KR, Sue CM. New insights into the complex role of mitochondria in Parkinson's disease. Prog Neurobiol. 2019;177:73-93.
CrossRef
PubMed
- Saxena U. Bioenergetics failure in neurodegenerative diseases: back to the future. Expert Opin Ther Targets. 2012;16(4):351-4.
CrossRef
PubMed
- Li L, Nadanaciva S, Berger Z, Shen W, Paumier K, Schwartz J, Mou K, Loos P, Milici AJ, Dunlop J. Human A53T α-Synuclein causes reversible deficits in mitochondrial function and dynamics in primary mouse cortical neurons. PLoS ONE. 2013;8(12):e85815.
CrossRef
PubMed PubMedCentral
- Nunez-Figueredo Y, Pardo-Andreu G L, Ramírez-Sánchez J, Delgado-Hernández R, Ochoa-Rodríguez E, Verdecia- Reyes Y, Naal Z, Muller A P, Portela L V, Souza D O. Antioxidant effects of JM-20 on rat brain mitochondria and synaptosomes: mitoprotection against Ca2+-induced mitochondrial impairment. Brain Res Bull. 2014;109:68-76.
CrossRef
PubMed
- Fasano A, Visanji NP, Liu LWC, Lang AE, Pfeiffer RF. Gastrointestinal dysfunction in Parkinson's disease. Lancet Neurol. 2015;14(6):625-39.
CrossRef
PubMed
- Pathak D, Shields LY, Mendelsohn BA, Haddad D, Lin W, Gerencser AA, Kim H, Brand MD, Edwards RH. The role of mitochondrially derived ATP in synaptic vesicle recycling. JBiol Chem. 2015;290(37):22325-36.
CrossRef
PubMed PubMedCentral
- Bonora M, Patergnani S, Rimessi A, De Marchi E, Suski J, Bononi A, Giorgi C. ATP synthesis and storage. Purinergic Signal. 2012;8(3):343-57.
CrossRef
PubMed PubMedCentral
- Palmer G, Horgan D, Tisdale H, Singer T, Beinert H. Studies on the respiratory chain-linked reduced nicotinamide adenine dinucleotide dehydrogenase. XIV. Location of the sites of inhibition of rotenone, barbiturates, and piericidin by means of electron paramagnetic resonance spectroscopy. J Biol Chem. 1968;243(4):844-7.
CrossRef
PubMed
- Dănău A, Dumitrescu L, Lefter A and Popescu BO. Serum uric acid levels in Parkinson's disease: A cross-sectional electronic medical record database: Study from a Tertiary Referral Centre in Romania. Medicina 2022;58:245.
CrossRef
PubMed PubMedCentral
- Yakhine-Diop S, Morales-García J, Niso-Santano M, González-Polo R, Uribe-Carretero E, Martinez- Chacon G, Durand S, Maiuri M, Aiastui A, Zulaica M, RuízMartínez J, de Munain A, Pérez-Tur J, Pérez-Castillo A, Kroemer G, Bravo-San Pedro J, Fuentes J. Metabolic alterations in plasma from patients with familial and idiopathic Parkinson's disease. Aging (Albany NY). 2020;12(17):16690-708.
CrossRef
PubMed PubMedCentral
- Farooqui AA, Horrocks LA, Farooqui T. Glycerophos- pholipids in brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem Phys Lipids. 2000;106:1-29.
CrossRef
PubMed
- D'Ascenzo N, Antonecchia E, Angiolillo A, Bender V, Camerlenghi M, Xie Q, Metabolomics of blood reveals age-dependent pathways in Parkinson's disease. Cell Biosci. 2022;12(1):102.
CrossRef
PubMed PubMedCentral
- Keran Wanga, Zhehui Luoa, Chenxi Lia, Xuemei Huangb, Eric J Shiromac, Eleanor M Simonsickc, Honglei Chena. Blood cholesterol decreases as Parkinson's disease develops and progresses. J Parkinson's Disease. 2021;11:1177-86.
CrossRef
PubMed
- Liu Q, Trotter J, Zhang J, Peters MM, Cheng H, Bao J, Han X, Weeber EJ, Bu G. Neuronal LRP1 knockout in adult mice leads to impaired brain lipid metabolism and progressive, age-dependent synapse loss and neurodegeneration. J Neurosci. 2010;30(50):17068-78.
CrossRef
PubMed PubMedCentral
|