Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2022; 68(4): 89-97


Chromium, its properties, transformation, and impact on humans

R.Y. Iskra1,2, R.S. Fedoruk2

  1. Ivan Franko National University of Lviv, Ukraine
  2. Institute of Animal Biology NAAS of Ukraine, Lviv, Ukraine
DOI: https://doi.org/10.15407/fz68.04.089


Abstract

This review presents current views on the features of сhromium and its compounds, their interconversion, reduction of Cr (VI) by microorganisms, as well as the impact of chromium (VI) on the environment and humans. Chromium can have positive and negative effects on health, according to the dose, exposure time, and oxidation state. The most common forms of this metal in biological systems are trivalent Cr(III) and hexavalent Cr(VI). Hexavalent chromium is mobile, highly toxic to humans, and animals and considered a priority environmental pollutant. He is highly soluble and mobile. On the contrary, Cr(III) has relatively low toxicity and mobility and it is one of the micronutrients needed by humans. Сhromium (III) is an essential nutrient required to promote the action of insulin in body tissues so that the body can use sugars, proteins, and fats. Considerable attention is paid to the issues of interconversion of chromium compounds, reduction of Cr (VI) to Cr (III) by microorganisms, as well as physiological features of their action in humans. The present review discusses on the types of chromate reductases found in different bacteria, their mode of action, and potential applications in the bioremediation of hexavalent chromium. Іn the human body chromium (VI) is rapidly reduced to chromium (III) after penetration of biological membranes and in the gastric environment. The reduction of Cr(VI) to Cr(III) results in the formation of reactive intermediates that together with stress oxidative tissue damage and a cascade of cellular events, contribute to the cytotoxicity, genotoxicity, and carcinogenicity of Cr(VI)-containing compounds.

Keywords: chromium; genotoxicity; carcinogenicity; reduction Сr(VI); organism; intoxication

References

  1. Ertani A, Mietto A, Borin M, Nardi S. Chromium in Agricultural Soils and Crops: A Review. Water Air and Soil Pollution. 2017; 228(5):190. CrossRef
  2. Wilbur S, Abadin H, Fay M, et al. Toxicological profile for chromium. Atlanta (GA): Agency for Toxic Substances and Disease Registry (US). 2012 Sep.
  3. Shanker AK. Chromium: Environmental pollution, health effects and mode of action. Encycl Environ Health (2nd Edition). 2019;624-33. CrossRef
  4. Chowdhury RA, Datta R, Sarkar D. Heavy metal pollution and remediation. Chapter 3.10. Green Chemistry. An Inclusive Approach 2018; 359-73. CrossRef
  5. Gad SC. Chromium. Encycl Toxicology. (3rd Edition) 2014: 952-4. CrossRef
  6. Salmani AA, Fazaelipoor MH. Evaluation of rhamnolipid (RL) as a biosurfactant for the removal of chromium from aqueous solutions by precipitate flotation.J Environ Manag. 2016 Jan 1;165:184-7. CrossRef PubMed
  7. Thatoi H, Das S, Mishra J, Rath BP, Das N. Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review.J Environ Manag. 2014 Dec 15;146:383-99. CrossRef PubMed
  8. Iskra R, Yanovych V. The influence of chromium chloride consumption on lipid peroxidation and activity of the antioxidant defence in rat tissues. Biochemistry. Suppl Ser B: Biomed Chem. 2013;7(3):231-6. CrossRef
  9. Sushko O, Iskra R, Ponkalo L. Influence of chromium citrate on oxidative stress in the tissues of muscle and kidney of rats with experimentally induced diabetes. Regul Mech Biosyst. 2019;10(2): 209-14. CrossRef
  10. Iskra R, Antonyak H. Chromium in Health and Longevity. In: Trace elements and minerals in Health and Longevity. av Marco Malavolta, Eugenio Mocchegiani. Springer, 2018; pp.133-62. CrossRef
  11. Staniek HZ, Król E, Wójciak RW. The interactive effect of high doses of chromium(III) and different iron(III) levels on the carbohydrate status, lipid profile, and selected biochemical parameters in female wistar rats. Nutrients. 2020;12(10):3070. CrossRef PubMed PubMedCentral
  12. Tumolo M, Ancona V, De Paola D, Losacco D, Campanale C, Massarelli C, Uricchio VF. Chromium pollution in european water, sources, health risk, and remediation strategies: An overview. Int J Environ Res Publ Health. 2020 Jul 28;17(15):5438. CrossRef PubMed PubMedCentral
  13. Choppala G, Bolan N, Park JH. Chromium contamination and its risk management in complex environmental settings. Adv Agron. 2013;120:129-72. CrossRef
  14. Wise JTF, Wang L, Xu J, Zhang Z, Shi X. Oxidative stress of Cr(III) and carcinogenesis (Chapter 10). The Nutritional Biochemistry of Chromium (III) (2nd Edition) 2019: 323-40. CrossRef
  15. Mukherjee S, Chatterjee N, Sircar A, Maikap S, Singh A, Acharyya S, Paul S. A comparative analysis of heavy metal effects on medicinal plants. Appl Biochem Biotechnol. 2022. CrossRef PubMedCentral
  16. Ding M, Shi X. Molecular mechanisms of Cr(VI)-induced carcinogenesis. Mol Cell Biochem. 2002; 234:293-300. CrossRef PubMed
  17. Bell J, Ma X, McDonald TJ, Huang C-H, Sharma VK. Overlooked role of chromium(V) and chromium(IV) in chromium redox reactions of environmental importance. ACS EST Water. 2022. CrossRef
  18. Sharma P, Singh SP, Parakh SK, Tong YW. Health hazards of hexavalent chromium (Cr (VI)) and its microbial reduction. Health hazards of hexavalent chromium (Cr (VI)) and its microbial reduction. Bioengineered. 2022;13(3):4923-38. CrossRef PubMed PubMedCentral
  19. Contó MB, Camarini R. Spectrophotometric assay for the quantification of plasma ethanol levels in mice through chromium-ethanol oxidation-reduction reaction. Adv Biosci Biotechnol. 2022;13:175-87. CrossRef
  20. Sujatha D, John GSM, Takeuchi S, Mani U, Rose C. Chromate Tolerance and Extracellular Chromate Reductase Expression in Bacillus sp. Isolates. Sci J Biol. 2021 July 26;4(1): 28-38.
  21. Nguyen QA, Kim B, Chung HY, Quoc A, NguyenK, Kim J, Kim K. Reductive transformation of hexavalent chromium by ferrous ions in a frozen environment: Mechanism, kinetics, and environmental implications. Ecotoxicol Environ Safety. 2021; 208: 111735. CrossRef PubMed
  22. Pradhan N, Garai A, Patra B, Kar S, Maiti PK. An oxo(corrolato)chromium (V) complex selectively kills cancer cells by inducing DNA damage. Chem Commun. 2021;57(39). CrossRef PubMed
  23. Liu W, Li J, Zheng J, Chai L. Different Pathways for Cr(III) Oxidation: Implications for Cr(VI) Reoccurrence in Reduced Chromite Ore Processing Residue. Environ Sci Technol. 2020;54(19):11971-9. CrossRef PubMed
  24. Rahman Z, Thomas L. Chemical-assisted microbially mediated chromium (Cr) (VI) reduction under the influence of various electron donors, redox mediators, and other additives: An outlook on enhanced Cr(VI) removal. Front Microbiol. 28 Jan 2021. CrossRef PubMed PubMedCentral
  25. Younan S, Sakita GZ, Albuquerque TR, Keller R, BremerNetoH. Chromium(VI) bioremediation by probiotics. Sci Food Agricult. 2016 Sep; 96(12):3977-82. CrossRef PubMed
  26. An Q, Zhang M, Guo D, et al. Cr(VI) Removal by recombinant escherichia coli harboring the main functional genes ofsporosarcina saromensis M52. Front Microbiol. 03 Mar 2022. CrossRef PubMed PubMedCentral
  27. Baldiris R, Acosta-Tapia N, Montes A, Hernández J, Vivas-Reyes R. Reduction of hexavalent chromium and detection of chromate reductase (ChrR) in Stenotrophomonas maltophilia. Molecules. 2018;23:406. CrossRef PubMed PubMedCentral
  28. Tan H, Wang C, Zeng G, Luo Y, Li H, Xu H. Bioreduction and biosorption of Cr(VI) by a novelBacillussp. CRB-B1 strain. J Hazard Mater. 2020; 386:121628. CrossRef PubMed
  29. Wang X, Aulenta F, Puig S, Esteve-Núñez A, He Y, Mu Y, et al. Microbial electrochemistry for bioremediation. Environ Sci Ecotechnol. 2020;1:100013. CrossRef
  30. Zhang B, Wang Z, Shi J, Dong H. Sulfur-based mixotrophic bio-reduction for efficient removal of chromium (VI) in groundwater. Geochim Cosmochim Acta 2020;268, 296-309. CrossRef
  31. Ibrahim AS, El-Tayeb MA, Elbadawi YB, Al-Salamah AA, Antranikian G. Hexavalent chromate reduction by alkaliphilic Amphibacillus sp. KSUCr3 is mediated by copper-dependent membrane-associated Cr(VI) reductase. Extremophiles. 2012;16:659-68. CrossRef PubMed
  32. Chai L, Ding C, Tang C, Yang W, Yang Z, Wang Y, et al. Discerning three novel chromate reduce and transport genes of highly efficient Pannonibacter phragmitetus BB: from genome to gene and protein. Ecotoxicol Environ Saf. 2018;162:139-46. CrossRef PubMed
  33. Kotyk B, Iskra R. Antioxidant effect of the complex action of vitamin e and ethylthiosulfanylate in the liver and kidneys of rats under conditions of chrome(VI)-induced oxidative stress. Biointerface Res Appl Chem. 2022; 12(2). 1405-20. CrossRef
  34. Tumolo M, Ancona V, De Paola D, Losacco D, Campanale C, Massarelli C, et al. Chromium pollution in European water, sources, health risk, and remediation strategies: an overview. Int J Environ Res Publ Health 2020;17:5438. CrossRef PubMed PubMedCentral
  35. Shi C, Cui Y, Lu J, Zhang B. Sulfur-based autotrophic biosystem for efficient Vanadium (V) and Chromium (VI) reductions in groundwater. Chem Eng J. 2020; 395:124972. CrossRef
  36. Rager JE, Suh M, Chappell GA, Thompson CM, Proctor DM. Review of transcriptomic responses to hexavalent chromium exposure in lung cells supports a role of epigenetic mediators in carcinogenesis. Toxicol Lett. 2019;305:40-50. CrossRef PubMed
  37. Wani PA, Wani JA, Wahid S. Recent advances in the mechanism of detoxification of genotoxic and cytotoxic Cr(VI) by microbes. J Environ Chem Eng. 2018; 6: 3798-807. CrossRef
  38. Ancona V, Campanale C, Tumolo M, De Paola D, Ardito C, and Volpe A. Enhancement of chromium (VI) reduction in microcosms amended with lactate or yeast extract: a laboratory-scale Study. Int J Environ Res Publ Health. 2020;17:704. CrossRef PubMed PubMedCentral
  39. Ao M, Chen X, Deng T, Sun S, Tang Y, Morel JL, Qiuae R, Wang S. Chromium biogeochemical behavior in soil-plant systems and remediation strategies: A critical review. J Hazard Mater. 2022;424,Part A:127233. CrossRef PubMed
  40. Viti C, Giovannetti L. Bioremediation of soils polluted with hexavalent chromium using bacteria: a challenge. In: Environmental Bioremediation Technologies, eds Singh SN, Tripathi RD. Berlin: Springer. 2007:57-76. CrossRef
  41. Poljsak B, Pócsi I, Raspor P, Pesti M. Interference of chromium with biological systems in yeasts and fungi: a review. J Basic Microbiol. 2010; 50: 21-36. CrossRef PubMed
  42. Thatheyus AJ, Ramya D. Biosorption of chromium using bacteria: an overview. Sci Int. 2016; 4(2): 74-9. CrossRef
  43. Cheng Y, Yongming XIE, Zheng J, Zhaoxian WU, Zhi C, Xiaoyan MA, et al. Identification and characterization of the chromium (VI) responding protein from a newly isolated Ochrobactrum anthropi CTS-325. J Environ Sci. 2009; 21:1673-8. CrossRef
  44. Sharma P, Chouhan R, Bakshi P. Amelioration of chromium-induced oxidative stress by combined treatment of selected plant-growth-promoting rhizobacteria and earthworms via modulating the expression of genes related to reactive oxygen species metabolism in brassica juncea. Front Microbiol. 06 Apr 2022. CrossRef PubMed PubMedCentral
  45. Mohamed MSM, El-Arabi NI, El-Hussein A, ElMaaty SA, Abdelhadi AA. Reduction of chromiumVI by chromium-resistant Escherichia coli FACU: a prospective bacterium for bioremediation. Folia Microbiol (Praha). 2020 Aug;65(4):687-96. CrossRef PubMed
  46. Bhakta JN. Metal toxicity in microorganism. in Handbook of Research on Inventive Bioremediation Techniques, ed. Bhakta JN. Hershey, PA: IGI Global. 2017:1-23. CrossRef
  47. Liu Y, Jin R, Liu G, Tian T, Zhou J. Effects of hexavalent chromium on performance, extracellular polymeric substances and microbial community structure of anaerobic activated sludge in a sequencing batch reactor.J Chem Technol Biotechnol. 2017;92:2719-30. CrossRef
  48. Sun FL, Fan LL, Wang YS, Huang LY. Metagenomic analysis of the inhibitory effect of chromium on microbial communities and removal efficiency in A2O sludge. J Hazard Mater. 2019; 368: 523-9. CrossRef PubMed
  49. Han H, Ling Z, Zhou T, Xu R, He Y, Liu P, et al. Copper (II) binding of NAD (P) H-flavin oxidoreductase (NfoR) enhances its Cr(VI)-reducing ability. Sci Rep. 2017; 7: 1-12. CrossRef PubMed PubMedCentral
  50. Yan X, Song M. Zhou M. Ding C. Wang Z. Wang Y. et al. Response of Cupriavidus basilensis B-8 to CuO nanoparticles enhances Cr(VI) reduction. Sci Tot Environ. 2019; 688: 46-55. CrossRef PubMed
  51. Oliveira H. Chromium as an environmental pollutant: insights on induced plant toxicity. J Botany. 2012; article ID 375843:8. CrossRef
  52. Brasili E, Bavasso I, Petruccelli V, Vilardi G, Valletta A, Bosco CD, Gentili A, Pasqua G, Di Palma L. Remediation of hexavalent chromium contaminated water through zero-valent iron nanoparticles and effects on tomato plant growth performance. Sci Rep. 2020;10:1920. CrossRef PubMed PubMedCentral
  53. Jones AS, Marini J, Solo-Gabriele HM, Robey NM, Townsend TG. Arsenic, copper, and chromium from treated wood products in the US disposal sector. Waste Manag. 2019;87:731-40. CrossRef PubMed
  54. Yang Y, Ma H, Chen X, Zhu C, Li X. Effect of incineration temperature on chromium speciation in real chromiumrich tannery sludge under air atmosphere. Environ Res. 2020;183:109159. CrossRef PubMed
  55. Ferronato N, Torretta V. Waste Mismanagement in Developing Countries: A Review of Global Issues.Int J Environ Res Publ Health. 2019;16:1060. CrossRef PubMed PubMedCentral
  56. European Environment Agency European Pollutant Release and Transfer Register. https://prtr.eea.europa.eu/#/ pollutantreleases
  57. Scientific Opinion on the risks to public health related to the presence of chromium in food and drinking water. EFSA Panel on Contaminants in the Food Chain (CONTAM). EFSA J. 2014;12(3):3595. CrossRef
  58. Wise JTF, Shi X, Zhang Z. Toxicology of Chromium(VI). Encycl Environ Health (2nd Edition). 2019:1-8. CrossRef PubMed
  59. Wilson B, Balogh E, Rayhan D, Shitabata P, Yousefzadeh D, Feldman S. Chromate-Induced Allergic Contact Dermatitis Treated With Dupilumab. Drugs Dermatol. 2021 Dec 1;20(12):1340-2. CrossRef PubMed
  60. Jiang Y, Dai M, Yang F, Ali I, Naz I, Peng C. Remediation of Chromium (VI) from Groundwater by Metal-Based Biochar under Anaerobic Conditions. Water 2022; 14:894. CrossRef
  61. Cárdenas González JF, Acosta Rodríguez I, Terán Figueroa Y, Lappe Oliveras P, Martínez Flores R, Rodríguez Pérez AS. Biotransformation of Chromium (VI) via a Reductant Activity from the Fungal Strain Purpureocillium lilacinum. J Fungi. 2021; 7: 1022. CrossRef PubMed PubMedCentral
  62. Tanga X, Huanga Y, Lia Y, Wang L, Pei X, Zhou D, He P, Hughes SS. Study on detoxification and removal mechanisms of hexavalent chromium by microorganisms. Ecotoxicol Environ Safety. 2021;208,15 Jan, 111699. CrossRef PubMed
  63. Vincent JB. Chromium In: Marriott BP, Birt DF, Stallings VA, Yates AY, eds. Present Knowledge in Nutrition 11th ed. Cambridge, MA: Elsevier; 2020:457-65. CrossRef
  64. Chakraborty R, Renu K, Elad MA, El-Sherbiny M. Mechanism of chromium-induced toxicity in lungs, liver, and kidney and their ameliorative agents. Biomed Pharmacother. 2022;4;151:113119. CrossRef PubMed
  65. Devoya J, Géhinb A, Müllera S, Melczera M, Remya A, Antoinea G, Sponnec I. Evaluation of chromium in red blood cells as an indicator of exposure to hexavalent chromium: An in vitro study. Toxicol Lett. 2016;255:63-70. CrossRef PubMed
  66. Karaulov AV, Renieri EA, Smolyagin AI, Tsatsakis AM. Long-term effects of chromium on morphological and immunological parameters of Wistar rats. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association. 2019; 133:110748. CrossRef PubMed
  67. Yalçın Tepe A. Toxic Metals: Trace Metals - Chromium, Nickel, Copper, and Aluminum. Encycl Food Safety. 2014; 2:356-62. CrossRef
  68. Zheng X, Li S, Li J, Lv Y, Wang X, Wu P. Hexavalent chromium induces renal apoptosis and autophagy via disordering the balance of mitochondrial dynamics in rats. Ecotoxicol Environ Safety. 2020;204:111061. CrossRef PubMed
  69. Chakraborty R, Renu K, Eladl MA, Elsherbini DMA. Mechanism of chromium-induced toxicity in lungs, liver, and kidney and their ameliorative agents. Biomed Pharmacother. 2022;151(10):113119. CrossRef PubMed
  70. Pavesi T, Moreira JC. Mechanisms and individuality in chromium toxicity in humans. J App Toxicol. 2020; Sep;40(9):1183-97. CrossRef PubMed
  71. Fang Z, Zhao M, Zhen H, Chen L, Shi P, Huang Z. Genotoxicity of tri- and hexavalent chromium compounds in vivo and their modes of action on DNA damage in vitro. PLoS ONE. 2014; 9(8): e103194. CrossRef PubMed PubMedCentral
  72. Feng H, Liu J, Hu G, Jia G. The role of epigenetics in the toxic effects induced by hexavalent chromium. Reactive Oxygen Species. 2018; 5(14):107-17. CrossRef
  73. Sawicka E, Jurkowska K, Piwowar A. Chromium (III) and chromium (VI) as important players in the induction of genotoxicity - Current view. Ann Agric Environ Med. 2021; 28(1): 1-10. CrossRef
  74. Genchi G, Lauria G, Catalano A, Carocci A. Sinicropi MS. The Double Face of Metals: The Intriguing Case of Chromium. Appl Sci. 2021;11(2):638. CrossRef
  75. Wakeman TP, Yang A, Dalal NS, et al. DNA mismatch repair protein Mlh1 is required for tetravalent chromium intermediate-induced DNA damage. Oncotarget. 2017; 8(48):83975-85. CrossRef PubMed PubMedCentral
  76. Khorsandi K, Rabbani-Chadegani A. Investigation on the chromium oxide interaction with soluble chromatin and histone H1: A spectroscopic study. Int J Biol Macromol. 2014;70:57-63. CrossRef PubMed
  77. Kotyk B, Iskra R, Slivinska O, Liubas N, Pylypets A, Lubenets V, Pryimych V. Effects of ethylthio sulfanilate and chromium (VI) on the state of pro/antioxidant system in rat liver. Ukr Biochem J. 2020;92(5):78-86. CrossRef
  78. Ma Y, Li S, Ye S, Tang S, Hu D, Wei L, Xiao F. Hexavalent chromium inhibits the formation of neutrophil extracellular traps and promotes the apoptosis of neutrophils via AMPK signaling pathway. Ecotoxicol Environ Safety. 2021; 223:112614. CrossRef PubMed

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2025.