POSSIBLE IMPORTANCE OF ADENYLATE CYCLASE SIGNALING PATHWAY IN THE SYNTHESIS OF NITRIC OXIDE BY MYOMETRIUM MITOCHONDRIA
Yu.V. Danylovych, H.V. Danylovych, S.O. Kosterin
Palladin Institute of Biochemistry of National Academy of
Science of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz68.04.033
Abstract
NO synthase activity (mtNOS) in uterine smooth muscle
mitochondria under the action of the cAMP/protein kinase A
signaling system modulators was studied. The experiments
were performed on isolated mitochondria from rat myometrium using the NO-sensitive fluorescent probe DAF-FM-DA.
NO synthesis in mitochondria was increased by adenylate
cyclase activators NaHCO3 (30 mM) and forskolin (10 μM),
as well as phosphodiesterase inhibitor caffeine (1 mM).
The addition of ATP (0.5-5 mM) caused a slight increase
in nitric oxide synthesis. The effect of ATP was enhanced
in the presence of NaHCO3 and caffeine. The intensity of
NO formation in mitochondria decreased by approximately
50 % in the case of inhibition of adenylate cyclase activity by
the compound KH7 (25 μM). In the presence of the protein
kinase A inhibitor PKI (10 nM) NO synthesis in mitochondria
was also significantly reduced. When the constitutive
NO-synthase inhibitor L-NAME (100 μM) was introduced
into the incubation medium, the stimulating effect of the
studied compounds on NO synthesis in mitochondria was
not observed. These data suggests a possible dependence of
mtNOS function on the activity of the cAMP/protein kinase A
signaling system in smooth muscle mitochondria.
Keywords:
nitric oxide; mitochondria; mitochondrial NOsynthase; cyclic adenosine monophosphate; protein kinase A; smooth muscle.
References
- Tatoyan A, Giulivi C. Purification and characterization of a nitric-oxide synthase from rat liver mitochondria. J Biol Chem. 1998; 273(18):11044-48.
CrossRef
PubMed
- Akopova OV, Korkach Yu P, Sagach VF. The regulation of mitochondrial NO synthase activity under nitroglycerine application in rat heart and liver mitochondria. Fiziol Zh. 2022;68(1):3-12. [Ukrainian].
CrossRef
- Lores-Arnaiz S, D'Amico G, CzerniczyniecA, Bustamante J, BoverisA. Brain mitochondrial nitric oxide synthase: in vitro and in vivo inhibition by chlorpromazine. Arch Biochem Biophys. 2004;430(2):170-7.
CrossRef
PubMed
- Boveris A, Valdez LB, Alvarez S, Zabornyi T, Boveris AD, Navarro A. Kidney mitochondrial nitric oxide synthase. Antioxid Redox Signal. 2003;5(3):265-71.
CrossRef
PubMed
- Alvarez S, Boveris A. Mitochondrial nitric oxide metabolism in rat muscle during endotoxemia. Free Radic Biol Med. 2004(9);37:1472-8.
CrossRef
PubMed
- Bustamante J, Bersier G, Romero M, Badin RA, Boveris A. Nitric oxide production and mitochondrial dysfunction during rat thymocyte apoptosis. Arch Biochem Biophys. 2000;376(2):239-47.
CrossRef
PubMed
- Haynes V, Elfering S, Traaseth N, Giulivi C. Mitochondrial nitric-oxide synthase: enzyme expression, characterization, and regulation. J Bioenerg Biomemb. 2004;36(4):341-6.
CrossRef
PubMed
- Valdez LB, Zaobornyj T, Boveris A. Mitochondrial metabolic states and membrane potential modulate mtNOS activity. Biochim Biophys Acta. 2006;1757(3):166-72.
CrossRef
PubMed
- Franco MC, Antico Arciuch VG, Peralta JG, Galli S, Levisman D, Lopez LM, et al. Hypothyroid phenotype is contributed by mitochondrial complex I inactivation due to translocated neuronal nitric-oxide synthase. J Biol Chem. 2006;281(8):4779-86.
CrossRef
PubMed
- Persichini T, Mazzone V, Polticelli F, Moreno S, Venturini G, Clementi E, Colasanti M. Mitochondrial type I nitric oxide synthase physically interacts with cytochrome c oxidase. Neurosci Lett. 2005;384(3):254-9.
CrossRef
PubMed
- Parihar MS, Nazarewicz RR, Kincaid E, Bringold U, Ghafourifar P. Association of mitochondrial nitric oxide synthase activity with respiratory chain complex I. Biochem Biophys Res Commun. 2008;366:23-8.
CrossRef
PubMed PubMedCentral
- Levine AB, Punihaole D, Levine TB. Characterization of the role of nitric oxide and its clinical applications. Cardiology. 2012;122:55-68.
CrossRef
PubMed
- Danylovych HV, Danylovych YuV, Gulina MO, Bohach TV, Kosterin SO. NO-synthase activity in the mitochondria of the uterus smooth muscle: identification and biochemical properties. Gen Physiol Biohys. 2019;38(1):39-50.
CrossRef
PubMed
- Braun T, Dods RF. Development of a Mn2+-sensitive, "soluble" adenylate cyclase in rat testis. Proc Natl Acad Sci USA. 1975;72(3):1097-101.
CrossRef
PubMed PubMedCentral
- Litvin TN, Kamenetsky M, Zarifyan A, Buck J, Levin LR. Kinetic properties of "soluble" adenylyl cyclase. Synergism between calcium and bicarbonate. J Biol Chem. 2003; 278(18):15922-26.
CrossRef
PubMed
- Zippin JH, Chen Y, Nahirney P, Kamenetsky M, Wuttke MS, Fischman DA, Levin LR, Buck J. Compartmentalization of bicarbonate-sensitive adenylyl cyclase in distinct signaling microdomains. FASEB J. 2003;17(1): 82-4.
CrossRef
PubMed
- Valsecchi F, Konrad C, Manfredi G. Role of soluble adenylyl cyclase in mitochondria. Biochim Biophys Acta. 2014;1842(12 Part B):2555-60.
CrossRef
PubMed PubMedCentral
- Hurley J H. Structure, mechanism, and regulation of mammalian adenylyl cyclase. J Biol Chem. 1999; 274(12):7599-602.
CrossRef
PubMed
- Bitterman JL, Ramos-Espiritu L, Diaz A, Levin LR, Buck J. Pharmacological distinction between soluble and transmembrane adenylyl cyclases. J Pharmacol Exp Ther. 2013;347(3):589-98.
CrossRef
PubMed PubMedCentral
- Liu C, Ke P, Zhang J, Zhang X, Chen X. Protein kinase inhibitor peptide as a tool to specifically inhibit protein kinase A. Front Physiol. 2020; 11:574030.
CrossRef
PubMed PubMedCentral
- Kolomiets OV, Danylovych YuV, Danylovych HV, Kosterin SO. Ca2+/H+-exchange in myometrium mitochondria. Ukr Biochem J. 2014; 86(3):41-8. [Ukrainian].
CrossRef
PubMed
- Wiggins SV, Steegborn CLevin LR, Buck J. Pharmacological modulation of the CO2/HCO3−/pH-, calcium-, and ATP-sensing soluble adenylyl cyclase. Pharmacol Ther. 2018;190:173-86.
CrossRef
PubMed PubMedCentral
- Veloso C, Rodrigues VG, Ferreira RCM, Duarte LP, Klein A, Duarte ID, Romero TRL, Perez AC. Tingenone, a pentacyclic triterpene, induces peripheral antinociception due to NO/cGMP and ATP-sensitive K+ channels pathway activation in mice. Eur J Pharmacol. 2015;755: 1-5.
CrossRef
PubMed
- Amer YO, Hebert-Chatelain E. Mitochondrial cAMP-PKA signaling: What do we really know? Biochim Biophys Acta Bioenerg. 2018;1859(9):868-77.
CrossRef
PubMed
- Modis K, Panopoulos P, Coletta C, Papapetropoulos A, Szabo C. Hydrogen sulfide-mediated stimulation of mitochondrial electron transport involves inhibition of the mitochondrial phosphodiesterase 2A, elevation of cAMP and activation of protein kinase A. Biochem Pharmacol. 2013;86(9):1311-9.
CrossRef
PubMed
- Di Benedetto GD, Lefkimmiatis K, Pozzan T. The basics of mitochondrial cAMP signalling: where, when, why. Cell Calcium. 2021;93:102320.
CrossRef
PubMed
|