Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2022; 68(4): 33-39


Yu.V. Danylovych, H.V. Danylovych, S.O. Kosterin

    Palladin Institute of Biochemistry of National Academy of Science of Ukraine, Kyiv, Ukraine


NO synthase activity (mtNOS) in uterine smooth muscle mitochondria under the action of the cAMP/protein kinase A signaling system modulators was studied. The experiments were performed on isolated mitochondria from rat myometrium using the NO-sensitive fluorescent probe DAF-FM-DA. NO synthesis in mitochondria was increased by adenylate cyclase activators NaHCO3 (30 mM) and forskolin (10 μM), as well as phosphodiesterase inhibitor caffeine (1 mM). The addition of ATP (0.5-5 mM) caused a slight increase in nitric oxide synthesis. The effect of ATP was enhanced in the presence of NaHCO3 and caffeine. The intensity of NO formation in mitochondria decreased by approximately 50 % in the case of inhibition of adenylate cyclase activity by the compound KH7 (25 μM). In the presence of the protein kinase A inhibitor PKI (10 nM) NO synthesis in mitochondria was also significantly reduced. When the constitutive NO-synthase inhibitor L-NAME (100 μM) was introduced into the incubation medium, the stimulating effect of the studied compounds on NO synthesis in mitochondria was not observed. These data suggests a possible dependence of mtNOS function on the activity of the cAMP/protein kinase A signaling system in smooth muscle mitochondria.

Keywords: nitric oxide; mitochondria; mitochondrial NOsynthase; cyclic adenosine monophosphate; protein kinase A; smooth muscle.


  1. Tatoyan A, Giulivi C. Purification and characterization of a nitric-oxide synthase from rat liver mitochondria. J Biol Chem. 1998; 273(18):11044-48. CrossRef PubMed
  2. Akopova OV, Korkach Yu P, Sagach VF. The regulation of mitochondrial NO synthase activity under nitroglycerine application in rat heart and liver mitochondria. Fiziol Zh. 2022;68(1):3-12. [Ukrainian]. CrossRef
  3. Lores-Arnaiz S, D'Amico G, CzerniczyniecA, Bustamante J, BoverisA. Brain mitochondrial nitric oxide synthase: in vitro and in vivo inhibition by chlorpromazine. Arch Biochem Biophys. 2004;430(2):170-7. CrossRef PubMed
  4. Boveris A, Valdez LB, Alvarez S, Zabornyi T, Boveris AD, Navarro A. Kidney mitochondrial nitric oxide synthase. Antioxid Redox Signal. 2003;5(3):265-71. CrossRef PubMed
  5. Alvarez S, Boveris A. Mitochondrial nitric oxide metabolism in rat muscle during endotoxemia. Free Radic Biol Med. 2004(9);37:1472-8. CrossRef PubMed
  6. Bustamante J, Bersier G, Romero M, Badin RA, Boveris A. Nitric oxide production and mitochondrial dysfunction during rat thymocyte apoptosis. Arch Biochem Biophys. 2000;376(2):239-47. CrossRef PubMed
  7. Haynes V, Elfering S, Traaseth N, Giulivi C. Mitochondrial nitric-oxide synthase: enzyme expression, characterization, and regulation. J Bioenerg Biomemb. 2004;36(4):341-6. CrossRef PubMed
  8. Valdez LB, Zaobornyj T, Boveris A. Mitochondrial metabolic states and membrane potential modulate mtNOS activity. Biochim Biophys Acta. 2006;1757(3):166-72. CrossRef PubMed
  9. Franco MC, Antico Arciuch VG, Peralta JG, Galli S, Levisman D, Lopez LM, et al. Hypothyroid phenotype is contributed by mitochondrial complex I inactivation due to translocated neuronal nitric-oxide synthase. J Biol Chem. 2006;281(8):4779-86. CrossRef PubMed
  10. Persichini T, Mazzone V, Polticelli F, Moreno S, Venturini G, Clementi E, Colasanti M. Mitochondrial type I nitric oxide synthase physically interacts with cytochrome c oxidase. Neurosci Lett. 2005;384(3):254-9. CrossRef PubMed
  11. Parihar MS, Nazarewicz RR, Kincaid E, Bringold U, Ghafourifar P. Association of mitochondrial nitric oxide synthase activity with respiratory chain complex I. Biochem Biophys Res Commun. 2008;366:23-8. CrossRef PubMed PubMedCentral
  12. Levine AB, Punihaole D, Levine TB. Characterization of the role of nitric oxide and its clinical applications. Cardiology. 2012;122:55-68. CrossRef PubMed
  13. Danylovych HV, Danylovych YuV, Gulina MO, Bohach TV, Kosterin SO. NO-synthase activity in the mitochondria of the uterus smooth muscle: identification and biochemical properties. Gen Physiol Biohys. 2019;38(1):39-50. CrossRef PubMed
  14. Braun T, Dods RF. Development of a Mn2+-sensitive, "soluble" adenylate cyclase in rat testis. Proc Natl Acad Sci USA. 1975;72(3):1097-101. CrossRef PubMed PubMedCentral
  15. Litvin TN, Kamenetsky M, Zarifyan A, Buck J, Levin LR. Kinetic properties of "soluble" adenylyl cyclase. Synergism between calcium and bicarbonate. J Biol Chem. 2003; 278(18):15922-26. CrossRef PubMed
  16. Zippin JH, Chen Y, Nahirney P, Kamenetsky M, Wuttke MS, Fischman DA, Levin LR, Buck J. Compartmentalization of bicarbonate-sensitive adenylyl cyclase in distinct signaling microdomains. FASEB J. 2003;17(1): 82-4. CrossRef PubMed
  17. Valsecchi F, Konrad C, Manfredi G. Role of soluble adenylyl cyclase in mitochondria. Biochim Biophys Acta. 2014;1842(12 Part B):2555-60. CrossRef PubMed PubMedCentral
  18. Hurley J H. Structure, mechanism, and regulation of mammalian adenylyl cyclase. J Biol Chem. 1999; 274(12):7599-602. CrossRef PubMed
  19. Bitterman JL, Ramos-Espiritu L, Diaz A, Levin LR, Buck J. Pharmacological distinction between soluble and transmembrane adenylyl cyclases. J Pharmacol Exp Ther. 2013;347(3):589-98. CrossRef PubMed PubMedCentral
  20. Liu C, Ke P, Zhang J, Zhang X, Chen X. Protein kinase inhibitor peptide as a tool to specifically inhibit protein kinase A. Front Physiol. 2020; 11:574030. CrossRef PubMed PubMedCentral
  21. Kolomiets OV, Danylovych YuV, Danylovych HV, Kosterin SO. Ca2+/H+-exchange in myometrium mitochondria. Ukr Biochem J. 2014; 86(3):41-8. [Ukrainian]. CrossRef PubMed
  22. Wiggins SV, Steegborn CLevin LR, Buck J. Pharmacological modulation of the CO2/HCO3−/pH-, calcium-, and ATP-sensing soluble adenylyl cyclase. Pharmacol Ther. 2018;190:173-86. CrossRef PubMed PubMedCentral
  23. Veloso C, Rodrigues VG, Ferreira RCM, Duarte LP, Klein A, Duarte ID, Romero TRL, Perez AC. Tingenone, a pentacyclic triterpene, induces peripheral antinociception due to NO/cGMP and ATP-sensitive K+ channels pathway activation in mice. Eur J Pharmacol. 2015;755: 1-5. CrossRef PubMed
  24. Amer YO, Hebert-Chatelain E. Mitochondrial cAMP-PKA signaling: What do we really know? Biochim Biophys Acta Bioenerg. 2018;1859(9):868-77. CrossRef PubMed
  25. Modis K, Panopoulos P, Coletta C, Papapetropoulos A, Szabo C. Hydrogen sulfide-mediated stimulation of mitochondrial electron transport involves inhibition of the mitochondrial phosphodiesterase 2A, elevation of cAMP and activation of protein kinase A. Biochem Pharmacol. 2013;86(9):1311-9. CrossRef PubMed
  26. Di Benedetto GD, Lefkimmiatis K, Pozzan T. The basics of mitochondrial cAMP signalling: where, when, why. Cell Calcium. 2021;93:102320. CrossRef PubMed

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.