Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2022; 68(4): 33-39


POSSIBLE IMPORTANCE OF ADENYLATE CYCLASE SIGNALING PATHWAY IN THE SYNTHESIS OF NITRIC OXIDE BY MYOMETRIUM MITOCHONDRIA

Yu.V. Danylovych, H.V. Danylovych, S.O. Kosterin

    Palladin Institute of Biochemistry of National Academy of Science of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz68.04.033


Abstract

NO synthase activity (mtNOS) in uterine smooth muscle mitochondria under the action of the cAMP/protein kinase A signaling system modulators was studied. The experiments were performed on isolated mitochondria from rat myometrium using the NO-sensitive fluorescent probe DAF-FM-DA. NO synthesis in mitochondria was increased by adenylate cyclase activators NaHCO3 (30 mM) and forskolin (10 μM), as well as phosphodiesterase inhibitor caffeine (1 mM). The addition of ATP (0.5-5 mM) caused a slight increase in nitric oxide synthesis. The effect of ATP was enhanced in the presence of NaHCO3 and caffeine. The intensity of NO formation in mitochondria decreased by approximately 50 % in the case of inhibition of adenylate cyclase activity by the compound KH7 (25 μM). In the presence of the protein kinase A inhibitor PKI (10 nM) NO synthesis in mitochondria was also significantly reduced. When the constitutive NO-synthase inhibitor L-NAME (100 μM) was introduced into the incubation medium, the stimulating effect of the studied compounds on NO synthesis in mitochondria was not observed. These data suggests a possible dependence of mtNOS function on the activity of the cAMP/protein kinase A signaling system in smooth muscle mitochondria.

Keywords: nitric oxide; mitochondria; mitochondrial NOsynthase; cyclic adenosine monophosphate; protein kinase A; smooth muscle.

References

  1. Tatoyan A, Giulivi C. Purification and characterization of a nitric-oxide synthase from rat liver mitochondria. J Biol Chem. 1998; 273(18):11044-48. CrossRef PubMed
  2. Akopova OV, Korkach Yu P, Sagach VF. The regulation of mitochondrial NO synthase activity under nitroglycerine application in rat heart and liver mitochondria. Fiziol Zh. 2022;68(1):3-12. [Ukrainian]. CrossRef
  3. Lores-Arnaiz S, D'Amico G, CzerniczyniecA, Bustamante J, BoverisA. Brain mitochondrial nitric oxide synthase: in vitro and in vivo inhibition by chlorpromazine. Arch Biochem Biophys. 2004;430(2):170-7. CrossRef PubMed
  4. Boveris A, Valdez LB, Alvarez S, Zabornyi T, Boveris AD, Navarro A. Kidney mitochondrial nitric oxide synthase. Antioxid Redox Signal. 2003;5(3):265-71. CrossRef PubMed
  5. Alvarez S, Boveris A. Mitochondrial nitric oxide metabolism in rat muscle during endotoxemia. Free Radic Biol Med. 2004(9);37:1472-8. CrossRef PubMed
  6. Bustamante J, Bersier G, Romero M, Badin RA, Boveris A. Nitric oxide production and mitochondrial dysfunction during rat thymocyte apoptosis. Arch Biochem Biophys. 2000;376(2):239-47. CrossRef PubMed
  7. Haynes V, Elfering S, Traaseth N, Giulivi C. Mitochondrial nitric-oxide synthase: enzyme expression, characterization, and regulation. J Bioenerg Biomemb. 2004;36(4):341-6. CrossRef PubMed
  8. Valdez LB, Zaobornyj T, Boveris A. Mitochondrial metabolic states and membrane potential modulate mtNOS activity. Biochim Biophys Acta. 2006;1757(3):166-72. CrossRef PubMed
  9. Franco MC, Antico Arciuch VG, Peralta JG, Galli S, Levisman D, Lopez LM, et al. Hypothyroid phenotype is contributed by mitochondrial complex I inactivation due to translocated neuronal nitric-oxide synthase. J Biol Chem. 2006;281(8):4779-86. CrossRef PubMed
  10. Persichini T, Mazzone V, Polticelli F, Moreno S, Venturini G, Clementi E, Colasanti M. Mitochondrial type I nitric oxide synthase physically interacts with cytochrome c oxidase. Neurosci Lett. 2005;384(3):254-9. CrossRef PubMed
  11. Parihar MS, Nazarewicz RR, Kincaid E, Bringold U, Ghafourifar P. Association of mitochondrial nitric oxide synthase activity with respiratory chain complex I. Biochem Biophys Res Commun. 2008;366:23-8. CrossRef PubMed PubMedCentral
  12. Levine AB, Punihaole D, Levine TB. Characterization of the role of nitric oxide and its clinical applications. Cardiology. 2012;122:55-68. CrossRef PubMed
  13. Danylovych HV, Danylovych YuV, Gulina MO, Bohach TV, Kosterin SO. NO-synthase activity in the mitochondria of the uterus smooth muscle: identification and biochemical properties. Gen Physiol Biohys. 2019;38(1):39-50. CrossRef PubMed
  14. Braun T, Dods RF. Development of a Mn2+-sensitive, "soluble" adenylate cyclase in rat testis. Proc Natl Acad Sci USA. 1975;72(3):1097-101. CrossRef PubMed PubMedCentral
  15. Litvin TN, Kamenetsky M, Zarifyan A, Buck J, Levin LR. Kinetic properties of "soluble" adenylyl cyclase. Synergism between calcium and bicarbonate. J Biol Chem. 2003; 278(18):15922-26. CrossRef PubMed
  16. Zippin JH, Chen Y, Nahirney P, Kamenetsky M, Wuttke MS, Fischman DA, Levin LR, Buck J. Compartmentalization of bicarbonate-sensitive adenylyl cyclase in distinct signaling microdomains. FASEB J. 2003;17(1): 82-4. CrossRef PubMed
  17. Valsecchi F, Konrad C, Manfredi G. Role of soluble adenylyl cyclase in mitochondria. Biochim Biophys Acta. 2014;1842(12 Part B):2555-60. CrossRef PubMed PubMedCentral
  18. Hurley J H. Structure, mechanism, and regulation of mammalian adenylyl cyclase. J Biol Chem. 1999; 274(12):7599-602. CrossRef PubMed
  19. Bitterman JL, Ramos-Espiritu L, Diaz A, Levin LR, Buck J. Pharmacological distinction between soluble and transmembrane adenylyl cyclases. J Pharmacol Exp Ther. 2013;347(3):589-98. CrossRef PubMed PubMedCentral
  20. Liu C, Ke P, Zhang J, Zhang X, Chen X. Protein kinase inhibitor peptide as a tool to specifically inhibit protein kinase A. Front Physiol. 2020; 11:574030. CrossRef PubMed PubMedCentral
  21. Kolomiets OV, Danylovych YuV, Danylovych HV, Kosterin SO. Ca2+/H+-exchange in myometrium mitochondria. Ukr Biochem J. 2014; 86(3):41-8. [Ukrainian]. CrossRef PubMed
  22. Wiggins SV, Steegborn CLevin LR, Buck J. Pharmacological modulation of the CO2/HCO3−/pH-, calcium-, and ATP-sensing soluble adenylyl cyclase. Pharmacol Ther. 2018;190:173-86. CrossRef PubMed PubMedCentral
  23. Veloso C, Rodrigues VG, Ferreira RCM, Duarte LP, Klein A, Duarte ID, Romero TRL, Perez AC. Tingenone, a pentacyclic triterpene, induces peripheral antinociception due to NO/cGMP and ATP-sensitive K+ channels pathway activation in mice. Eur J Pharmacol. 2015;755: 1-5. CrossRef PubMed
  24. Amer YO, Hebert-Chatelain E. Mitochondrial cAMP-PKA signaling: What do we really know? Biochim Biophys Acta Bioenerg. 2018;1859(9):868-77. CrossRef PubMed
  25. Modis K, Panopoulos P, Coletta C, Papapetropoulos A, Szabo C. Hydrogen sulfide-mediated stimulation of mitochondrial electron transport involves inhibition of the mitochondrial phosphodiesterase 2A, elevation of cAMP and activation of protein kinase A. Biochem Pharmacol. 2013;86(9):1311-9. CrossRef PubMed
  26. Di Benedetto GD, Lefkimmiatis K, Pozzan T. The basics of mitochondrial cAMP signalling: where, when, why. Cell Calcium. 2021;93:102320. CrossRef PubMed

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.