MORPHOFUNCTIONAL CHANGES IN THE LIVER PARENCHYMA OF RATS WITH THE ADMINISTRATION OF L-TRYPTOPHAN
R.V. Yanko, O.G. Chaka, S.L. Safonov, A.S. Zinchenko, M.I. Levashov
O.O. Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz68.03.078
Abstract
The morphofunctional changes of the liver parenchyma of
male Wistar rats after administration of L-tryptophan were
investigated. Experimental rats in addition to the standard diet
received L-tryptophan at a dose of 80 mg/kg. The duration
of the experiment was 28 days. Histological preparations
were made from liver tissue according to standard methods.
Morphometry was performed on digital images using
the computer program “Image J”. The activity of hepatic
aminotransferases and albumin concentration were determined
in serum by biochemical methods; in liver homogenates
determined glucose-6-phosphatase activity and triglyceride
concentration; in the suspension of hepatocyte mitochondria
determined succinate dehydrogenase activity and protein
concentration. Multifrequency bioimpedancemetry was used
to assess the biophysical properties of the liver. It was found
that the administration of L-tryptophan leads to an increase in
the nuclear-cytoplasmic ratio (19%), the number of binuclear
hepatocytes (81%), and the relative area of the sinusoid (17%).
Aspartate aminotransferase activity decreased in serum of
experimental rats and albumin concentration increased. In the
homogenate of the liver of these animals, the activity of glucose6-phosphatase and the concentration of triglycerides decreased.
Succinate dehydrogenase activity and protein concentration
in the hepatocyte mitochondrial suspension increased by
35% and 32%, respectively. The method of multifrequency
bioimpedancemetry revealed an increase in the ability of the
liver tissue of experimental rats to polarize, namely to increases
in reactivity. That is, the administration of L-tryptophan is
accompanied by the appearance of morphological, biochemical,
and biophysical signs of increased synthetic and regenerative
activity of the rat liver parenchyma.
Keywords:
tryptophan; liver; rats.
References
1. Höglund E, Øverli Ø, Winberg S. Tryptophan metabolic pathways and brain serotonergic activity: a comparative review. Front Endocrinol. 2019;10:158.
2. Höglund E, Øverli Ø, Andersson MÅ, Silva P, Laursen DC, Moltesen MM, Krogdahl Å, Schjolden J, Winberg S, Vindas MA, Mayer I, Hillestad M. Dietary l-tryptophan leaves a lasting impression on the brain and the stress response. Br J Nutr. 2017;117:1351-7.
3. Sainio EL, Pulkki K, Young SN. L-Tryptophan: Biochemical, nutritional and pharmacological aspects. Amino Acids. 1996;10(1):21-47.
4. Koike S, Kabuyama Y, Obeng KA, Sugahara K, Sato Y, Yoshizawa F. An increase in liver polyamine concentration contributes to the tryptophan-induced acute stimulation of rat hepatic protein synthesis. Nutrients. 2020;12:2665.
5. Osawa Y, Kanamori H, Seki E, Hoshi M, Ohtaki H, Yasuda Y, et al. L-tryptophan-mediated enhancement of susceptibility to nonalcoholic fatty liver disease is dependent on the mammalian target of rapamycin. J Biol Chem. 2011; 286(40):34800-8.
6. Ritze Y, Bárdos G, Hubert A, Böhle M, Bischoff S. Effect of tryptophan supplementation on diet-induced non-alcoholic fatty liver disease in mice. Br J Nutr. 2014;112(1):1-7.
7. Danilov RK. Histology guide. Vol. ІІ. St. Petersburg: SpecLith. 2011. [Russian].
8. Yanko RV, Chaka OG, Levashov MI. Influence of methionine on morphofunctional changes of rat liver parenchyma. Fiziol Zh. 2020;66(5):38-45. [Ukrainian].
9. Rudzki Z, Szczudrawa J, Stachura J. Morphometry of normal, regenerating and cancerous hepatocytes. Folia Histochem Cytobiol. 1999;27(3):141-8.
10. Nikolayev DV, Smirnov AV, Bobrinskaya IG, Rudnev SG. Bioimpedance analysis of human body composition. Moskow: Nauka. 2009. [Russian].
11. Rosioru C, Talu S, Talu M, Talu M, Giovanzana S, Craciun C. Morphometric assessments for the healthy rat hepatocytes. Ann Roman Soc Cell Biol. 2012;XVII(1):74-9.
12. Obolenska MYu. Liver regeneration in rats: molecular biological processes and their regulation [abstract of dissertation]. Kyiv. 1999. [Ukraine].
13. Romanova LP, Malyshev II. The role of binuclear hepatocytes in liver regeneration after mechanical trauma in early ontogenesis in rats. Vest Chuvash Univ. 2011;3: 398-402. [Russian].
14. Brunt EM, Gouw AS, Hubscher SG, Tiniakos DG, Bedossa P, Burt AD, et al. Pathology of the liver sinusoids. Histopathology. 2014;64(7):907-20.
15. Spinella R, Sawhney R, Jalan R. Albumin in chronic liver disease: structure, functions and therapeutic implications. Hepatol Int. 2016;10(1):124-32.
16. Ress C, Kaser S. Mechanisms of intrahepatic triglyceride accumulation. World J Gastroenterol. 2016;22(4):1664-73.
17. Akiba Y, Takahashi K, Horiguchi M, Ohtani H, Saitoh S, Ohkawara H. L -Tryptophan alleviates fatty liver and modifies hepatic microsomal mixed function oxidase in laying hens. Comp Biochem Physiol Comp Physiol. 1992;102(4):769-74.
18. Cichoz-Lach H, Celinski K, Konturek PC, Konturek SJ, Slomka M. The effects of L-tryptophan and melatonin on selected biochemical parameters in patients with steatohepatitis. J Physiol Pharmacol. 2010;61(5):577-80.
19. Allen JF. Why chloroplasts and mitochondria retain their own genomes and genetic systems: Colocation for redox regulation of gene expression. PNAS. 2015;112(33):10231-238.
20. Rutter J, Winge DR, Schiffman JD. Succinate dehydrogenase – Assembly, regulation and role in human disease. Mitochondrion. 2010;10(4):393-401.
21. Baran H, Staniek K, Bertignol-Spörr M, Attam M, Kronsteiner C, Kepplinger B. Effects of various kynurenine metabolites on respiratory parameters of rat brain, liver and heart mitochondria. Int J Tryptophan Res. 2016;9:17-29.
22. van Schaftingen E, Gerin I. The glucose-6-phosphatase system. Biochem J. 2002;362(Part 3):513-32.
23. Panchenkov DN, Leonov SD, Ivanov YuV, Soloviev NA, Nechunaev AA, Rodin AV. Estimation of total electrical resistance of the liver parenchyma in patients with diseases of hepatopancreatoduodenal area with laparoscopic and bioimpedance measuring needle. Endoscop Surg. 2015;2:30-3. [Russian].
24. Bera TK. Bioelectrical impedance methods for noninvasive health monitoring: A review. J Med Eng. 2014;2014:381251.
25. Dremza IK, Cheshchevik VT, Zabrodskaia SV, Maksimchik IuZ, Sudnikovich EIu, Lapshina EA, Zavodnik IB. Hepatotoxic effects of acetaminophen. Protective properties of tryptophan-derivatives. Biomed Khim. 2010;56(6):710-8. [Russian].
|