Influence of lipopolysaccharide on the development of oxidative-nitrosative stress in the liver of rats under conditions of chronic alcohol intoxication
A.O. Mykytenko, O.Y. Akimov, K.S. Neporada
Poltava State Medical University, Ukraine
DOI: https://doi.org/10.15407/fz68.02.029
Abstract
Alcohol abuse is a common phenomenon among the countries of the European continent. One of the
first organs suffering from alcohol-induced damage is the liver. Activation of Kupffer cells, as part of the
mononuclear phagocyte system, plays a significant role in the development of oxidative-nitrosative damage
of the liver. Systemic inflammatory response affects the polarization of macrophages throughout the body
and may affect the development of alcohol damage of hepatocytes. The aim of this work is to study the effect
of in vivo stimulation by S. typhi bacterial lipopolysaccharide on the development of oxidative-nitrosative
stress in rat liver under conditions of chronic alcohol intoxication. Male Wistar rats were randomly divided
into 4 groups: I - control; II - rats received 0.4 μg/kg of bacterial lipopolysaccharide of S. typhi; III - rats
with induced alcoholic hepatitis, and IV - rats with chronic alcohol intoxication and injected bacterial
lipopolysaccharide. The experiment lasted 63 days. We studied pro-oxidants antioxidant enzymes, the
concentration of sulfide anion, nitric oxide production and malonic dialdehyde concentration in liver tissues.
In vivo administration of bacterial lipopolysaccharide enhances ethanol-induced oxidative liver damage
via increased production of superoxide anion despite the adaptive increase in the activity of antioxidant
enzymes. Nitric oxide, the production of which increases in the liver during prolonged stimulation of the
rat body with bacterial lipopolysaccharide, chronic alcohol intoxication and their combination, mainly
metabolizes to peroxynitrite
Keywords:
lipopolysaccharide-induced hepatitis; alcoholic hepatitis; nitric oxide cycle; sulfide anion.
References
- Kourkoumpetis T, Sood G. Pathogenesis of alcoholic liver disease: An update. Clin Liver Dis. 2019 Feb;23(1):71-80.
CrossRef
PubMed
- Mortezaee K, Khanlarkhani N. Melatonin application in targeting oxidative-induced liver injuries. J Cell Physiol. 2018 May;233(5):4015-32.
CrossRef
PubMed
- Yan SL, Huang CS, Mong MC, Yin MC. Oridonin attenuates the effects of chronic alcohol consumption inducing oxidative, glycative and inflammatory injury in the mouse liver. In vivo. 2021 Jul-Aug;35(4):2141-9.
CrossRef
PubMed PubMedCentral
- Santos-Molina L, Herrerias A, Zawatsky CN, GunduzCinar O, Cinar R, Iyer MR, Wood CM, Lin Y, Gao B, Kunos G, Godlewski G. Effects of a peripherally restricted hybrid inhibitor of CB1 receptors and iNOS on alcohol drinking behavior and alcohol-induced endotoxemia. Molecules. 2021 Aug 22;26(16):5089.
CrossRef
PubMed PubMedCentral
- de Jong WJ, Cleveringa AM, Greijdanus B, Meyer P, Heineman E, Hulscher JB. The effect of acute alcohol intoxication on gut wall integrity in healthy male volunteers; a randomized controlled trial. Alcohol. 2015 Feb;49(1):65-70.
CrossRef
PubMed
- Patel S, Behara R, Swanson GR, Forsyth CB, Voigt RM, Keshavarzian A. Alcohol and the intestine. Biomolecules. 2015 Oct 15;5(4):2573-88.
CrossRef
PubMed PubMedCentral
- Kawaratani H, Moriya K, Namisaki T, Uejima M, Kitade M, Takeda K, Okura Y, Kaji K, Takaya H, Nishimura N, Sato S, Sawada Y, Seki K, Kubo T, Mitoro A, Yamao J, Yoshiji H. Therapeutic strategies for alcoholic liver disease: Focusing on inflammation and fibrosis (Review). Int J Mol Med. 2017 Aug;40(2):263-70.
CrossRef
PubMed
- Ohtani N, Kawada N. Role of the gut-liver axis in liver inflammation, fibrosis, and cancer: A special focus on the gut microbiota relationship. Hepatol Commun. 2019 Mar 1;3(4):456-70.
CrossRef
PubMed PubMedCentral
- Nowak AJ, Relja B. The impact of acute or chronic alcohol intake on the NF-κB signaling pathway in alcohol-related liver disease. Int J Mol Sci. 2020 Dec 10;21(24):9407.
CrossRef
PubMed PubMedCentral
- Su L, Li N, Tang H, Lou Z, Chong X, Zhang C, Su J, Dong X. Kupffer cell-derived TNF-α promotes hepatocytes to produce CXCL1 and mobilize neutrophils in response to necrotic cells. Cell Death Dis. 2018 Feb 23;9(3):323.
CrossRef
PubMed PubMedCentral
- Kakinuma Y, Kimura T, Watanabe Y. Possible involvement of liver resident macrophages (Kupffer cells) in the pathogenesis of both intrahepatic and extrahepatic inflammation. Can J Gastroenterol Hepatol. 2017;2017:2896809.
CrossRef
PubMed PubMedCentral
- Dong W, Song E, Song Y. Co-administration of lipopolysaccharide and D-galactosamine induces genotoxicity in mouse liver. Sci Rep. 2021 Jan 18;11(1):1733.
CrossRef
PubMed PubMedCentral
- Yelins'ka AM, Liashenko LI, Kostenko VO. Quercetin potentiates antiradical properties of epigallocatechin3-gallate in periodontium of rats under systemic and local administration of lipopolisaccharide of Salmonella typhi. Wiad Lek. 2019 Aug 31;72(8):1499-503.
CrossRef
PubMed
- Stepanov YuM, Didenko VI, Dynnik OB, Konenko IS, Oshmianskaia NYu, Galinsky AA. Association of morphological changes in the liver parenchyma and its rigidity under the conditions of the experimental modeling of alcoholic and toxic hepatitis. J NAMSU. 2017;23(3-4):196-204.
- Akimov OYe, Kostenko VO. Functioning of nitric oxide cycle in gastric mucosa of rats under excessive combined intake of sodium nitrate and fluoride. Ukr Biochem J. 2016;88(6):70-5.
CrossRef
PubMed
- Yelins'ka AM, Akimov OYe, Kostenko VO. Role of AP-1 transcriptional factor in development of oxidative and nitrosative stress in periodontal tissues during systemic inflammatory response. Ukr Biochem J. 2019;91(1):80-5.
CrossRef
- Brusov OS, Gerasimov AM, Panchenko LF. Effect of natural inhibitors of radical reactions on adrenaline autoxidation. Bull Exp Biol Med. 1976;1:33-5. [Russian].
CrossRef
- Korolyuk MA, Ivanova LI, Mayorova IG. Method for determination of catalase activity. Lab Sci. 1988;1:16-9. [Russian].
- Gérard-Monnier D, Erdelmeier I, Régnard K, MozeHenry N, Yadan JC, Chaudière J. Reactions of 1-methyl2-phenylindole with M\malondialdehyde and 4-hydroxyalkenals. Analytical applications to a colorimetric assay of lipid peroxidation. Chem Res Toxicol. 1998; 11(10):1176-83.
CrossRef
PubMed
- Gaston B, Reilly J, Drazen JM, Fackler J, Ramdev P, Arnelle D, et al. Endogenous nitrogen oxides and bronchodilator S-nitrosothiols in human airways. Proc Natl Acad Sci USA. 1993;90:10957-61.
CrossRef
PubMed PubMedCentral
- Sugahara S, Suzuki M, Kamiya H, Yamamuro M, Semura H, Senga Y, Egawa M, Seike Y. Colorimetric determination of sulfide in microsamples. Anal Sci. 2016;32(10):1129-31.
CrossRef
PubMed
- Kostenko VO, Tsebrzhins'kii OI. Production of superoxide anion radical and nitric oxide in renal tissues sutured with different surgical suture material. Fiziol Zh. 2000;46(5):56-62. [Ukrainian].
- Suriguga S, Luangmonkong T, Mutsaers HAM, Groothuis GMM, Olinga P. Host microbiota dictates the proinflammatory impact of LPS in the murine liver. Toxicol In Vitro. 2020 Sep;67:104920.
CrossRef
PubMed
- Ferro D, Baratta F, Pastori D, Cocomello N, Colantoni A, Angelico F, Del Ben M. new insights into the pathogenesis of non-alcoholic fatty liver disease: Gut-derived lipopolysaccharides and oxidative stress. Nutrients. 2020 Sep 10;12(9):2762.
CrossRef
PubMed PubMedCentral
- Peng J, Li J, Huang J, Xu P, Huang H, Liu Y, et al. p300/ CBP inhibitor A-485 alleviates acute liver injury by regulating macrophage activation and polarization. Theranostics. 2019 Oct 22;9(26):8344-61.
CrossRef
PubMed PubMedCentral
- Lu Y, Leung TM, Ward SC, Nieto N. Partial deletion of argininosuccinate synthase protects from pyrazole plus lipopolysaccharide-induced liver injury by decreasing nitrosative stress. Am J Physiol Gastrointest Liver Physiol. 2012 Feb 1;302(3):G 287-95.
CrossRef
PubMed PubMedCentral
- Proniewski B, Kij A, Sitek B, Kelley EE, Chlopicki S. Multiorgan development of oxidative and nitrosative stress in LPS-induced endotoxemia in C57Bl/6 mice: DHE-based in vivo approach. Oxid Med Cell Longev. 2019 May 22;2019:7838406.
CrossRef
PubMed PubMedCentral
- Mykytenko AO, Yeroshenko GA. Reaction of hemomicrocirculatory bed of rat liver and changes in the functional state of the nitric oxide cycle under the conditions of modeling alcoholic hepatitis. World Med Biol. 2020;73(3):194-200.
CrossRef
- Mykytenko AO, Akimov OYe, Yeroshenko GA, Neporada KS. Morphological and functional changes of the hepatic vascular bed under the conditions of modeling alcoholic hepatitis. World Med Biol. 2021;77(3):229-36.
CrossRef
- Chen LY, Chen Q, Zhu XJ, Kong DS, Wu L, Shao JJ, Zheng SZ. Diallyl trisulfide protects against ethanolinduced oxidative stress and apoptosis via a hydrogen sulfide-mediated mechanism. Int Immunopharmacol. 2016 Jul;36:23-30.
CrossRef
PubMed
- de Gregorio E, Colell A, Morales A, Marí M. Relevance of SIRT1-NF-κB axis as therapeutic target to ameliorate inflammation in liver disease. Int J Mol Sci. 2020 May 29;21(11):3858.
CrossRef
PubMed PubMedCentral
- Rao PS, Midde NM, Miller DD, Chauhan S, Kumar A, Kumar S. Diallyl sulfide: Potential use in novel therapeutic interventions in alcohol, drugs, and disease mediated cellular toxicity by targeting cytochrome P450 2E1. Current Drug Metab. 2015;16(6):486-503.
CrossRef
PubMed PubMedCentral
- Wang H, Li X, Zhu Z, Wang H, Wei B, Bai X. Hydrogen sulfide promotes lipopolysaccharide-induced apoptosis of osteoblasts by inhibiting the AKT/NF-κB signaling pathway. Biochem Biophys Res Commun. 2020 Apr 16;524(4):832-8.
CrossRef
PubMed
- Wynia-Smith SL, Smith BC. Nitrosothiol formation and S-nitrosation signaling through nitric oxide synthases. Nitric Oxide. 2017 Feb 28;63:52-60.
CrossRef
PubMed
|