Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2021; 67(5): 54-63


Oxidative stress as a factor in the deterioration of oxygen transfer during exercise

L.M. Gunina1, I.L. Rybina2, Yu.A. Ataman3, V.L. Voitenko4

  1. Olympic Institute of National University for Physical Education and Sports of Ukraine, Kyiv, Ukraine
  2. Complex Scientific Group on Scientific and Methodological Support of Belarusian Biathlon Federation, Minsk, Republic of Belarus
  3. Scientific and Methodological Center for Sports Medicine of Sumy State University, Ukraine
  4. Medical Institute of Sumy State University, Ukraine
DOI: https://doi.org/10.15407/fz67.05.054

Abstract

Blood oxygen transport regulation by physical activity increase within training dynamics is provided with different mechanisms: from the quantitative and qualitative erythron restructure (including endogenous erythropoietin rise and main erythrocyte index shifts) to change in haemoglobin affinity to oxygen, its heterogeneous structure and blood flow growth as a result of endothelium hyperpolarisation. However, the erythrocyte itself remains a key performer in blood velocity control, due to its structure and functions. This review summarizes the data of modern scientific literature on the characteristics of erythrocytes, which make these cells one of the key links in the oxygen transport system of the blood. The focus on this property of erythrocytes during physical activity is based on the fact that the athlete’s muscles must be supplied with enough oxygen to ensure high performance. Specific training and extra-training factors affecting the content of erythrocytes have been determined. The membrane structure is treated as a significant erythrocyte part in determining its deformation and microvascular blood transport. Enzymes associated with the erythrocyte membrane and affecting cell viability and performance are described. Besides, it is stressed on monitoring erythrocyte indices via modern equipment and assessing lipid peroxidation, which leads to disorders in erythrocyte membrane structure and functions.

Keywords: physical activity; erythrocyte; shape; membrane; blood velocity; blood oxygen transport; lipid peroxidation; microcirculation

References

  1. Krogh A. The respiratory exchange of animals and man. London-New York, Longmans, Green, 1916. CrossRef
  2. Mairbäurl H. Red blood cell function in hypoxia at altitude and exercise. Int J Sports Med. 1994;15(2):51-63. CrossRef PubMed
  3. Mairbäurl H, Weber RE. Oxygen transport by hemoglobin. Compr Physiol. 2012;2(2):1463-89. CrossRef PubMed
  4. González-Alonso J. ATP as a mediator of erythrocyte-dependent regulation of skeletal muscle blood flow and oxygen delivery in humans. J Physiol. 2012;590(20):5001-13. CrossRef PubMed PubMedCentral
  5. Gunina L, Rybina I, Kotlyarenko L. Use of indicators of hematological homeostasis to assess the functional state of athletes and control the training process. Sci Olymp Sports. 2020;(3):65-75. [Russian].
  6. Ciekot-Sołtysiak M., Kusy K, Podgórski T, Zieliński J. Training-induced annual changes in red blood cell profile in highly-trained endurance and speed-power athletes. J Sports Med Phys Fitnes. 2018;58(12):1859-66. CrossRef PubMed
  7. Montero D, Lundby C. Regulation of red blood cell volume with exercise training. Compr Physiol. 2018;9(1):149-64. CrossRef PubMed
  8. Montero D, Breenfeldt-Andersen A, Oberholzer L, Haider T, Goetze Jens P, Meinild-Lundby A-K, Lundby C. Erythropoiesis with endurance training: dynamics and mechanisms. Am J Physiol Regul Integr Comp Physiol. 2017;312(6):R894-R902. CrossRef PubMed
  9. Dautova AZ, Khazhieva EA, Shamratova VG. Oxygen transport function of blood at different levels of motor activity depending on polymorphisms of the CMA1 and ACE genes. Modern Probl Sci Educat. 2018;(2). [Russian].
  10. Ellis CG, Milkovich S, Goldman. What is the efficiency of ATP signaling from erythrocytes to regulate distribution of O2 supply within the microvasculature? Microcirculation. 2012;19(5):440-50. CrossRef PubMed PubMedCentral
  11. Prankerd TA. Clinical significance of red-cell structure and metabolism. Br Med J. 1965;2(5469):1017-20. CrossRef PubMed PubMedCentral
  12. Klenova NA, Klenov RO. The structure, metabolism and functional activity of human erythrocytes in health and disease. Samara, SSU Publ House, 2009;116 p.
  13. Moroz VV, Golubev AM, Afanasyev AV, Kuzovlev AN, Sergunova VA, et al. The structure and function of the erythrocyte in normal and critical conditions. General Resuscitat. 2012; VIII (1):52-60. [Russian]. CrossRef
  14. Dopsaj V, Martinovic J, Dopsaj M. Early detection of iron deficiency in elite athletes: could microcytic anemia factor (MAF) be useful? Int J Lab Hematol. 2014;36(1):37-44. CrossRef PubMed
  15. Malczewska-Lenczowska J, Surała O, Orysiak J, Turowski D, Szczepańska B, Tomaszewski P. Utility of novel hypochromia and microcythemia markers in classifying hematological and iron status in male athletes. Nutrients. 2019;11(11):2767. CrossRef PubMed PubMedCentral
  16. Charoenkwan P, Taweephol R, Sirichotiyakul S, Tantiprabha W, Sae-Tung R, Suanta S, Sakdasirisathaporn P, Sanguansermsri T. Cord blood screening for alphathalassemia and hemoglobin variants by isoelectric focusing in northern Thai neonates: correlation with genotypes and hematologic parameters. Blood Cells Mol Dis. 2010;45(1):53-7. CrossRef PubMed
  17. Longeville S, Stingaciu L-R. Hemoglobin diffusion and the dynamics of oxygen capture by red blood cells. Sci Rep. 2017;7(1):10448. CrossRef PubMed PubMedCentral
  18. Risinger M, Kalfa TA. Red cell membrane disorders: structure meets function. Blood. 2020;136(11):1250-61. CrossRef PubMed PubMedCentral
  19. Suzuki Y, Tateishi N, Soutani M, Maeda N. Deformation of erythrocytes in microvessels and glass capillaries: effects of erythrocyte deformability. Microcirculation. 1996;3(1):49-57. CrossRef PubMed
  20. Devaux PF, Herrmann A, Ohlwein N, Kozlov MM. How lipid flippases can modulate membrane structure. Biochim Biophys Acta. 2008;1778(7-8):1591-600. CrossRef PubMed
  21. Hąc-Wydro K, Dynarowicz-Łątka P. Externalization of phosphatidylserine from inner to outer layer may alter the effect of plant sterols on human erythrocyte membrane - the Langmuir monolayer studies. Biochim Biophys Acta. 2012;1818(9):2184-91. CrossRef PubMed
  22. Pomorski T, Menon AK. Lipid flippases and their biological functions. Cell Mol Life Sci. 2006;63(24): 2908-21. CrossRef PubMed
  23. LinsL, Decaffmeyer M, Thomas A, Brasseur R. Relationships between the orientation and the structural properties of peptides and their membrane interactions. Biochim Biophys Acta. 2008;1778(7-8):1537-44. CrossRef PubMed
  24. Blanc L, Salomao M, Guo X, An X, Gratzer W, Mohandas N. Control of erythrocyte membrane-skeletal cohesion by the spectrin-membrane linkage. Biochemistry. 2010;49(21):4516-23. CrossRef PubMed PubMedCentral
  25. Chorzalska A, Lach A, Borowik T, Wolny M, HryniewiczJankowska A, Kolondra A, Langner M, Sikorski AF. The effect of the lipid-binding site of the ankyrin-binding domain of erythroid beta-spectrin on the properties of natural membranes and skeletal structures. Cell Mol Biol Lett. 2010;15(3):406-23. CrossRef PubMed PubMedCentral
  26. Daniels G. Functions of red cell surface proteins. Vox Sanguinis. 2007;93:331-40. CrossRef PubMed
  27. Delaunay J. The enzymes of the red blood cell plasma membrane. The enzymes of the red blood cell plasma membrane. Biomedicine. 1977;26(6):357-61.
  28. Leonart MS, Nascimento AJ, Nonoyama K, Pelissari CB, Barretto OC. Enzymes and membrane proteins of ADSOL-preserved red blood cells. Sao Paulo Med J. 2000;118(2):41-5. CrossRef PubMed
  29. Berzosa C, Gómez-Trullén EM, Piedrafita E, Cebrián I, Martínez-Ballarín E, Miana-Mena FJ, Fuentes-Broto L, García JJ. Erythrocyte membrane fluidity and indices of plasmatic oxidative damage after acute physical exercise in humans. Eur J Appl Physiol. 2011;111(6):1127-33. CrossRef PubMed
  30. Gibson JS, Stewart GW, Ellory JC. Effect of dimethyl adipimidate on K+ transport and shape change in red blood cells from sickle cell patients. FEBS Lett. 2000;480(2-3):179-83. CrossRef
  31. Revin VV, Gromova NV, Revina ES, Prosnikova KV, Revina NV, Bochkareva SS, Stepushkina OG, Grunyushkin IP, Tairova MR, Incina VI. Effects of polyphenol compounds and nitrogen oxide donors on lipid oxidation, membrane-skeletal proteins, and erythrocyte structure under hypoxia. Biomed Res Int. 2019;2019:6758017. CrossRef PubMed PubMedCentral
  32. Veiko AG, Sekowski S, Lapshina EA, Wilczewska AZ, Markiewicz KH, Zamaraeva M, Zhao HC, Zavodnik IB. Flavonoids modulate liposomal membrane structure, regulate mitochondrial membrane permeability and prevent erythrocyte oxidative damage. Biochim Biophys Acta Biomembr. 2020;1862(11):183442. CrossRef PubMed
  33. Pribush A, Hatskelzon L, Kapelushnik J, Meyerstein N. Osmotic swelling and hole formation in membranes of thalassemic and spherocytic erythrocytes. Blood Cells Mol. Dis. 2003;31(1):43-7. CrossRef
  34. McNamara RK, Welge JA. Meta-analysis of erythrocyte polyunsaturated fatty acid biostatus in bipolar disorder. Bipolar Disord. 2016;18(3):300-6. CrossRef PubMed PubMedCentral
  35. Judd AM, Best KB, Christensen K, Rodgers GM, Bell JD, et al. Alterations in sensitivity to calcium and enzymatic hydrolysis of membranes from sickle cell disease and trait erythrocytes. Am J Hematol. 2003;72(3):162-69. CrossRef PubMed
  36. Giannì ML, Roggero P, Baudry C, Ligneul A, Morniroli D, Garbarino F, le Ruyet P, Mosca F. The influence of a formula supplemented with dairy lipids and plant oils on the erythrocyte membrane omega-3 fatty acid profile in healthy full-term infants: a double-blind randomized controlled trial. BMC Pediatr. 2012;12:164. CrossRef PubMed PubMedCentral
  37. Robinson Y, Cristancho E, Böning D. Intravascular hemolysis and mean red blood cell age in athletes. Med Sci Sports Exerc. 2006;38(3):480-3. CrossRef PubMed
  38. Maciaszek JL, Andemariam B, Huber G, Lykotrafitis G. Epinephrine modulates BCAM/Lu and ICAM-4 expression on the sickle cell trait red blood cell membrane. Biophys J. 2012;102(5):1137-43. CrossRef PubMed PubMedCentral
  39. Gunina LM. Oxidative stress and adaptation: metabolic aspects of the influence of physical activity. Sci Olympic Sports. 2013;(4):19-25. [Russian].
  40. Welbourn EM, Wilson MT, Yusof A, Metodiev MV, Cooper CE. The mechanism of formation, structure and physiological relevance of covalent hemoglobin attachment to the erythrocyte membrane. Free Radic Biol Med. 2017;103:95-106. CrossRef PubMed PubMedCentral
  41. Yang W, Fu J, Yu M, Huang Q, Wang D, et al. Effects of flaxseed oil on anti-oxidative system and membrane deformation of human peripheral blood erythrocytes in high glucose level. Lipids Health Dis. 2012;11:88. CrossRef PubMed PubMedCentral
  42. Gunina Larisa, Sergey Konyushok. Antioxidant effect of plant adaptogens on the erythrocyte membranes of weightlifters. Sci Olympic Sports. 2008;(2):111-14. [Russian].
  43. Shalev O, Hebbel RP. Catalysis of soluble hemoglobin oxidation by free iron on sickle red cell membranes. Blood. 1996;87(9):3948-52. CrossRef PubMed
  44. Snyder LM, Fortier NL, Trainor J, Jacobs J, Leb L, Lubin B, Chiu D, Shohet S, Mohandas N. Effect of hydrogen peroxide exposure on normal human erythrocyte deformability, morphology, surface characteristics, and spectrin-hemoglobin cross-linking. J Clin Invest. 1985;76(5):1971-77. CrossRef PubMed PubMedCentral
  45. Rybina IL, Gunina LM. Laboratory markers of control and management of the training process of athletes: science and practice. Moscow, Publ House «Sport», 2021; 372 p.
  46. Yuksel B. Investigation of morphological abnormalities in red blood cells among dental laboratory technicians. Environ Sci Pollut Res Int. 2021;28(16):20650-58. CrossRef PubMed
  47. Machiedo GW,Zaets S, Berezina T, Xu DZ, Spolarics Z, Deitch EA. Red blood cell damage after trauma-hemorrhage is modulated by gender. J Trauma. 2004; 56(4):837-44. CrossRef PubMed
  48. Singh M, Sandhir R, Kiran R. Oxidative stress induced by atrazine in rat erythrocytes: mitigating effect of vitamin E. Toxicol Mech Methods. 2010;20(3):119-26. CrossRef PubMed
  49. Ajdzanović V, Spasojević I, Filipović B, Sosić-Jurjević B, Sekulić M, Milosević V. Effects of genistein and daidzein on erythrocyte membrane fluidity: an electron paramagnetic resonance study. Can J Physiol Pharmacol. 2010;88(4):497-500. CrossRef PubMed
  50. Risso A, Santamaria B, Pistarino E, Cosulich ME, Pompach P, Bezouska K, Antonutto G. Fragmentation of human erythrocyte actin following exposure to hypoxia. Acta Haematol. 2010;123(1):613. CrossRef PubMed
  51. Ciccoli L, De Felice C, Paccagnini E, Leoncini S, Pecorelli A, Signorini C, Belmonte G, Guerranti R, Cortelazzo A, Gentile M, Zollo G, Durand T, Valacchi G, Rossi M, Hayek J. Erythrocyte shape abnormalities, membrane oxidative damage, and β-actin alterations: an unrecognized triad in classical autism. Mediators Inflam. 2013;2013:432616. CrossRef PubMed PubMedCentral
  52. Butikofer P, Kuypers FA, Lane P, Chiu DT, Lubin BH, Ott P. Erythrocyte phospholipid organization and vesiculation in hereditary high red cell membrane phosphatidylcholine hemolytic anemia. J Lab Clin Med. 1989;113(3):278-84.
  53. Robaszkiewicz A, Greig FH, Pitt AR, Spickett CM, Bartosz G, Soszyński M. Effect of phosphatidylcholine chlorohydrins on human erythrocytes. Chem Phys Lipids. 2010;163(7):639-47. CrossRef PubMed
  54. Kilic-Toprak E, Ardic F., Erken G, Unver-Kocak F, Kucukatay V, Bor-Kucukatay M. Hemorheological responses to progressive resistance exercise training in healthy young males. Med. Sci. Monit. 2012;18(6):CR351-60. CrossRef PubMed PubMedCentral
  55. Bizjak DA, Jacko D, Zimmer P, Gehlert S, Bloch W, Grau M. Acute alterations in the hematological and hemorheological profile induced by resistance training and possible implication for microvascular functionality. Microvascul Res. 2018;118:137-43. CrossRef PubMed
  56. Maanum G, Jahnsen R, Frøslie KF. Walking ability and predictors of performance on the 6-minute walk test in adults with spastic cerebral palsy. Dev Med Child Neurol. 2010;52(6):126-32. CrossRef PubMed
  57. Emmerson O, Bester J, Lindeque BG, Swanepoel AC. The impact of two combined oral contraceptives containing ethinyl estradiol and drospirenone on whole blood clot viscoelasticity and the biophysical and biochemical characteristics of erythrocytes. Microsc Microanal. 2018;24(6):713-28. CrossRef PubMed
  58. Yao H, Ma Y, Huang LJ. Deletion of miR-451 curbs JAK2(V617F)-induced erythrocytosis in polycythemia vera by oxidative stress-mediated erythroblast apoptosis and hemolysis. Haematologica. 2020;105(4):e153-56. CrossRef PubMed PubMedCentral
  59. Lomako VV, Shilo OV. Transformation of erythrocytes in rats of different ages. Advances Gerontol. 2019;32(1- 2):55-9. [Russian].
  60. Dinarelli S, Longo G, Dietler G, Francioso A, Mosca L, et al. Erythrocyte's aging in microgravity highlights how environmental stimuli shape metabolism and morphology. Sci Rep. 2018;8(1):5277. CrossRef PubMed PubMedCentral
  61. Becatti M, Marcucci R, Mannucci A, Gori AM, Giusti B, et al. Erythrocyte membrane fluidity alterations in sudden sensorineural hearing loss patients: The role of oxidative stress. Thromb Haemost. 2017;117(12):2334-45. CrossRef PubMed
  62. Tang F, Feng L, Li R, Wang W, Liu H, Yang Q, Ge RL. Inhibition of suicidal erythrocyte death by chronic hypoxia. High Alt Med Biol. 2019;20(2):112-19. CrossRef PubMed
  63. Brun JF, Varlet-Marie E, Connes P, Aloulou I. Hemorheological alterations related to training and overtraining. Biorheology. 2010;47(2):95-115. CrossRef PubMed
  64. Gunina LM, Orel VE, Savosta AV, Tymchenko AS. Superficial architecture of the cytoskeleton of erythrocytes in normal and metabolic changes in the body. Ukr Zh Hematol Transfusiol. 2008;(2):5-13. [Ukrainian].
  65. Bolotta A, Battistelli M, Falcieri E, Ghezzo A, Manara MC, et al. Oxidative stress in autistic children alters erythrocyte shape in the absence of quantitative protein alterations and of loss of membrane phospholipid asymmetry. Oxid Med Cell Longev. 2018;2018:6430601. CrossRef PubMed PubMedCentral
  66. Becatti M, Marcucci R, Gori AM, Mannini L, Grifoni E, Alessandrello Liotta A, Sodi A, Tartaro R, Taddei N, Rizzo S, Prisco D, Abbate R, Fiorillo C. Erythrocyte oxidative stress is associated with cell deformability in patients with retinal vein occlusion. J Thromb Haemost. 2016;14(11):2287-97. CrossRef PubMed
  67. Nandakumar SK, Ulirsch JC, Sankaran VG. Advances in understanding erythropoiesis: evolving perspectives. Br J Haematol. 2016;173(2):206-18. CrossRef PubMed PubMedCentral
  68. Drüeke TB, Massy ZA. Erythropoiesis-stimulating agents and mortality. J Am Soc Nephrol. 2019;30(6):907-8. CrossRef PubMed PubMedCentral
  69. Bosman GJ, Willekens FL, Werre JM. Erythrocyte aging: a more than superficial resemblance to apoptosis? Cell Physiol Biochem. 2005;16(1-3):1-8. CrossRef PubMed
  70. Sgrò P, Sansone M, Sansone A, Romanelli F, Di Luigi L. Effects of erythropoietin abuse on exercise performance. Phys Sportsmed. 2018;46(1):105-15. CrossRef PubMed
  71. Feng S, Chang S, Yan L, Dong H, Xu X, et al. Design, synthesis, and activity evaluation of novel erythropoietin mimetic peptides. Bioorg Med Chem Lett. 2018;28(18):3038-41. CrossRef PubMed
  72. Locatelli Ferrari F, Helal L, Dipp T, Soares D, Soldatelli Â, et al. Intradialytic training in patients with end-stage renal disease: a systematic review and meta-analysis of randomized clinical trials assessing the effects of five different training interventions. J Nephrol. 2020;33(2):251-66. CrossRef PubMed
  73. Yan J, Jin G, Du L, Yang Q. Modulation of intestinal folate absorption by erythropoietin in vitro. Mol Pharm. 2014;11(1):358-66. CrossRef PubMed
  74. Czuba M, Wilk R, Karpiński J, Chalimoniuk M, Zajac A, Langfort J. Intermittent hypoxic training improves anaerobic performance in competitive swimmers when implemented into a direct competition mesocycle. PLoS One. 2017;12(8):e0180380. CrossRef PubMed PubMedCentral
  75. Prohibited List-2021 WADA. Electronic resource: https:// www.google.com/search?client=firefox-b-d&q=wadaama+prohibited+list+2021 Ubukawa K, Sawada K. Erythropoiesis and enucleation. Rinsho Ketsueki. 2013;54(7):617-27. (Article in Japan, Summary in English)
  76. Sprague RS, Bowles EA, Achilleus D, Ellsworth ML. Erythrocytes as controllers of perfusion distribution in the microvasculature of skeletal muscle. Acta Physiol (Oxf). 2011;202(3):285-92. CrossRef PubMed PubMedCentral

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2022.