Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2021; 67(5): 44-53


THE ROLE OF IMMUNOGLOBULIN A IN THE INFLAMMATORY PROCESS INVOLVING NEUTROPHILS

O.O. Prudnikov, I.M. Prudnikov, V.M. Tsyvkin, A.M. Smirnov, R.I. Yanchiy

    O.O. Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz67.05.044

Abstract

Neutrophils, as effector cells of acute inflammation, play a significant role in tissue homeostasis maintaining through participation in innate and adaptive immune responses. Class A immunoglobulins (IgA) are the most common antibodies in mucous membranes, as well as the second most abundant in the blood and are considered one of the powerful regulators of the functional activity of neutrophils. The review examines the effect of IgA on the inflammatory process involving neutrophils, which involves both the nonspecific innate immune response and the antigen-dependent response of the immunity. Depending on the situation, IgA is able to initiate both pro- and anti-inflammatory neutrophil response. Examples of diseases with IgA-dependent disorders in the regulation of neutrophil activity, as well as approaches to their correction are given. Particular attention has been paid to the possible association of some diseases in which neutrophils are overactivated by IgA immune complexes with female fertility disorders.

Keywords: immune system; IgA Fc receptor; immunoglobulin A; inflammation; neutrophils, oogenesis.

References

  1. Actor JK. Cells and organs of the immune system. Elsevier's Integrated Rev Immunol Microbiol. 2012:7-16. CrossRef
  2. Bongers BH, Na Chen, van Grinsven E, et al. Kinetics of neutrophil subsets in scute, subacute, and chronic inflammation. Front Immunol. 2021;12:674079. CrossRef PubMed PubMedCentral
  3. Filippi MD. Neutrophil transendothelial migration: updates and new perspectives. Blood. 2019;133(20): 2149-58. CrossRef PubMed PubMedCentral
  4. Richardson IM, Calo CJ, Hind LE. Microphysiological systems for studying cellular crosstalk during the neutrophil response to infection. Front Immunol. 2021;12:661537. CrossRef PubMed PubMedCentral
  5. Phillipson M, Heit B, Colarusso P, Liu L, et al. Intraluminal crawling of neutrophils to emigration sites: a molecularly distinct process from adhesion in the recruitment cascade. J Exp Med. 2006;203(12):2569-75. CrossRef PubMed PubMedCentral
  6. Ou Z, Dolmatova E, Lassègue B, Griendling KK. β1- and β2-integrins: central players in regulating vascular permeability and leukocyte recruitment during acute inflammation. Am J Physiol Heart Circ Physiol. 2021;320(2): H734-9. CrossRef PubMed
  7. Curi R, Levada-Pires AC, Borges da Silva E, et al. The critical role of cell metabolism for essential neutrophil functions. Cell Physiol Biochem. 2020;54(4):629-47. CrossRef PubMed
  8. Cowland JB, Borregaard N. Granulopoiesis and granules of human neutrophils. Immunol Rev. 2016;273(1):11-28. CrossRef PubMed
  9. Bedouhène S, Dang PM-C, Hurtado-Nedelec M, El-Benna J. Neutrophil degranulation of azurophil and specific granules. Methods Mol Biol. 2020;2087:215-22. CrossRef PubMed
  10. Stacey HD, Golubeva D, Posca A, Ang JC, et al. IgA potentiates NETosis in response to viral infection. Proc Natl Acad Sci USA. 2021;118(27):e2101497118. CrossRef PubMed
  11. Chang-Youh Tsai, Song-Chou Hsieh, Chih-Wei Liu, et al. Cross-talk among polymorphonuclear neutrophils, immune, and non-immune cells via released cytokines, granule proteins, microvesicles, and neutrophil extracellular trap formation: a novel concept of biology and pathobiology for neutrophils. Int J Mol Sci. 2021;22(6):3119. CrossRef PubMed PubMedCentral
  12. Park JH, Peyrin-Biroulet L, Eisenhut M, Shin JI. IBD immunopathogenesis: a comprehensive review of inflammatory molecules. Autoimmun Rev. 2017;16(4):416-26. CrossRef PubMed
  13. Alarcon MF, McLaren Z, Wright HL. Neutrophils in the pathogenesis of rheumatoid arthritis and systemic lupus erythematosus: same for different M.O. Front Immunol. 2021;12:649693. CrossRef PubMed PubMedCentral
  14. Duffy DM, Ko C, Jo M, Brannstrom M, Curry TE. Ovulation: parallels with inflammatory processes. Endocrin Rev. 2019;40(2):369-416. CrossRef PubMed PubMedCentral
  15. De Sousa-Pereira P, Woof JM. IgA: Structure, function, and developability. Antibodies (Basel) 2019;8(4):57. CrossRef PubMed PubMedCentral
  16. Leong KW, Ding JL. The unexplored roles of human serum IgA. DNA Cell Biol. 2014;33(12):823-9. CrossRef PubMed PubMedCentral
  17. Breedveld A, van Egmond M. IgA and FαRI: Pathological roles and therapeutic opportunities. Front Immunol. 2019;10:553. CrossRef PubMed PubMedCentral
  18. Ben Mkaddem S, Benhamou M, Monteiro RC. Understanding Fc receptor involvement in inflammatory diseases: from mechanisms to new therapeutic tools. Front Immunol. 2019;10:811. CrossRef PubMed PubMedCentral
  19. van Gool JMM, van Egmond M. IgA and FcαRI: Versatile players in homeostasis, Infection, and Autoimmunity. Immunotargets Ther. 2020;9:351-72. CrossRef PubMed PubMedCentral
  20. Novak J, Barratt J, Julian BA, Renfrow MB. Aberrant glycosylation of the IgA1 molecule in IgA nephropathy. Semin Nephrol. 2018;38(5):461-76. CrossRef PubMed PubMedCentral
  21. Bakema JE, van Egmond M. The human immunoglobulin A Fc receptor FcαRI: a multifaceted regulator of mucosal immunity. Mucosal Immunol. 2011;4(6):612-24. CrossRef PubMed
  22. Monteiro RC, Van De Winkel JG. IgA Fc receptors. Annu Rev Immunol. 2003;21:177-204. CrossRef PubMed
  23. Van Spriel AB, Leusen JH, Vile H. Mac-1 (CD11b/CD18) as accessory molecule for FcαR (CD89) binding of IgA. J Immunol. 2002;169(7):3831-6. CrossRef PubMed
  24. Posgai MT, Tonddast-Navaei S, Jayasinghe M, et al. FcαRI binding at the IgA1 CH2-CH3 interface induces long-range conformational changes that are transmitted to the hinge region. Proc Natl Acad Sci USA. 2018;115(38):E8882-91. CrossRef PubMed PubMedCentral
  25. Togo S, Shimokawa T, Fukuchi Y, Ra C. Alternative splicing of myeloid IgA Fc receptor (FcαR, CD89) transcripts in inflammatory responses. FEBS Lett. 2003;535(1-3):205-9. CrossRef
  26. Pasquier B, Launay P, Kanamaru Y, et al. Identification of FcαRI as an inhibitory receptor that controls inflammation: dual role of FcRg ITAM. Immunity. 2005; 22(1):31-42. CrossRef PubMed
  27. Aleyd E, Heineke MH, van Egmond M. The era of the immunoglobulin A Fc receptor FcαRI; its function and potential as target in disease. Immunol Rev. 2015;268(1):123-38. CrossRef PubMed
  28. Wu J, Ji C, Xie F, Langefeld CD, et al. FαRI (CD89) alleles determine the proinflammatory potential of serum IgA. J Immunol. 2007;178(6):3973-82. CrossRef PubMed
  29. Lu J, Marjon KD, Mold C, et al. Pentraxins and IgA share a binding hot-spot on FcαRI. Protein Sci. 2014;23(4):378-86. CrossRef PubMed PubMedCentral
  30. Lu J, Mold C, Du Clos TW, Sun PD. Pentraxins and Fc receptor-mediated immune responses. Front Immunol. 2018;9:2607. CrossRef PubMed PubMedCentral
  31. Wehrli M, Cortinas-Elizondo F, Hlushchuk R, et al. Human IgA Fc receptor FαRI (CD89) triggers different forms of neutrophil death depending on the inflammatory microenvironment. J Immunol. 2014;193(11):5649-59. CrossRef PubMed
  32. Borges L, Pithon-Curi TC, Curi R, Hatanaka E. COVID-19 and neutrophils: the relationship between hyperinflammation and neutrophil extracellular Traps. Mediators Inflamm. 2020;2020:8829674. CrossRef PubMed PubMedCentral
  33. Tyden H, Lood C, Gullstrand B, et al. Endothelial dysfunction is associated with activation of the type I interferon system and platelets in patients with systemic lupus erythematosus. RMD Open. 2017;3(2):e000508. CrossRef PubMed PubMedCentral
  34. Wang X, Avsec D, Obreza A, et al. A putative serine protease is required to initiate the RIPK3-MLKLmediated necroptotic death pathway in neutrophils. Front Pharmacol. 2021;11:614928. CrossRef PubMed PubMedCentral
  35. Palm NW, de Zoete MR, Cullen TW, et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell. 2014;158(5):1000-10. CrossRef PubMed PubMedCentral
  36. Mitsuyama K, Niwa M, Takedatsu H, et al. Antibody markers in the diagnosis of inflammatory bowel disease. World J Gastroenterol. 2016;22(3):1304-10. CrossRef PubMed PubMedCentral
  37. Bakema JE, Tuk CW, van Vliet SJ, et al. Antibody-opsonized bacteria evoke an inflammatory dendritic cell phenotype and polyfunctional Th cells by cross-talk between TLRs and FcRs. J Immunol. 2015;194(4):1856-66. CrossRef PubMed
  38. Aleyd E, Al M, Tuk CW, van der Laken CJ, van Egmond M. IgA complexes in plasma and synovial fluid of patients with rheumatoid arthritis induce neutrophil extracellular traps via FcαRI. J Immunol. 2016;197(12):4552-9. CrossRef PubMed
  39. Heineke MH, van der Steen LPE, Korthouwer RM, et al. Peptide mimetics of immunoglobulin A (IgA) and FαRI block IgA-induced human neutrophil activation and migration. Eur J Immunol. 2017;47(10):1835-45. CrossRef PubMed PubMedCentral
  40. Sterlin D, Gorochov G. When therapeutic IgA antibodies might come of age. Pharmacology. 2021;106(1-2):9-19. CrossRef PubMed
  41. Rossato E, Ben Mkaddem S, Kanamaru Y, et al. Reversal of arthritis by human monomeric IgA through the receptor-mediated SH2 domain-containing phosphatase 1 inhibitory pathway. Arthritis Rheumatol. 2015;67(7):1766-77. CrossRef PubMed
  42. Bohländer F, Riehl D, Weibmüller S, et al. Immunomodulation: immunoglobulin preparations suppress hyperinflammation in a COVID-19 model via FcγRIIA and FcαRI. Front Immunol. 2021;12:700429. CrossRef PubMed PubMedCentral
  43. Heemskerk N, van Egmond M. Monoclonal antibodymediated killing of tumour cells by neutrophils. Eur J Clin Invest. 2018;48(Suppl 2):e12962. CrossRef PubMed PubMedCentral
  44. Otten MA, Bakema JE, Tuk CW, et al. Enhanced FcαRImediated neutrophil migration towards tumour colonies in the presence of endothelial cells. Eur J Immunol. 2012;42(7):1815-21. CrossRef PubMed
  45. Borrok MJ, Luheshi NM, Beyaz N, et al. Enhancement of antibody-dependent cell-mediated cytotoxicity by endowing IgG with FcαRI (CD89) binding. MAbs. 2015;7(4):743-51. CrossRef PubMed PubMedCentral
  46. Fréour T, Miossec C, Bach-Ngohou K, et al. Ovarian reserve in young women of reproductive age with Crohn's disease. Inflamm Bowel Dis. 2012;18(8):1515-22. CrossRef PubMed
  47. Şenateş E, Çolak Y, Erdem ED, et al. Serum anti-müllerian hormone levels are lower in reproductive-age women with Crohn's disease compared to healthy control women. J Crohns Colitis. 2013;7(2):e29-34. CrossRef PubMed
  48. Zhao Y, Chen B, He Y, et al. Risk factors associated with impaired ovarian reserve in young women of reproductive age with Crohn's disease. Intest Res. 2020;18(2):200-9. CrossRef PubMed PubMedCentral
  49. Kadirogullari P, Yalcin Bahat P, et al. Ovarian reserve assessment in Crohn patients of reproductive age. Ginekol Pol. 2021. CrossRef PubMed
  50. Cakmak E, Karakus S, Demirpence O, et al. Ovarian reserve assessment in celiac patients of reproductive age. Med Sci Monit. 2018;24:1152-7. CrossRef PubMed PubMedCentral
  51. Martins NFE, Seixas MI, Pereira JP, et al. Anti-mullerian hormone and ovarian reserve in systemic lupus erythematosus. Clin Rheumatol. 2017;36(12):2853-4. CrossRef PubMed
  52. Brouwer J, Dolhain RJEM, Hazes JMW, et al. Decline of ovarian function in patients with rheumatoid arthritis: serum anti-mullerian hormone levels in a longitudinal cohort. RMD Open. 2020;6(3):e001307. CrossRef PubMed PubMedCentral
  53. Viana GE, Pereira VM, Honorato-Sampaio K, et al. Angiotensin-(1-7) induces ovulation and steroidogenesis in perfused rabbit ovaries. Exp Physiol. 2011;96(9):957-65. CrossRef PubMed
  54. Nishigaki A, Okada H, Okamoto R, et al. The concentration of human follicular fluid stromal cell-derived factor-1 is correlated with luteinization in follicles. Gynecol Endocrinol. 2013;29(3):230-4. CrossRef PubMed
  55. Camaioni A, Klinger FG, Campagnolo L, Salustri A. The influence of Pentraxin 3 on the ovarian function and its impact on fertility. Front Immunol. 2018;9:2808. CrossRef PubMed PubMedCentral

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2022.