Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2021; 67(4): 37-43


Effect of caffeine and coffee diets on calcium signalling in rat hippocampal neurons

V.M. Shkryl1, T.G. Turytska2, V.A. Yavorsky1, V.P. Lyashenko2, S.M. Lukashov3, E.A. Lukyanetz1

  1. Bogomoletz Institute of Physiology National Academy of Sciences of Ukraine, Kyiv, Ukraine
  2. Dnipro National Oles Honchar University, Dnipro, Ukraine
  3. Medical center “Headache”, Regional Clinical Hospital N.A. Mechnikov, Dnipro, Ukraine
DOI: https://doi.org/10.15407/fz67.04.037


Abstract

The effects of long-lasting high concentration coffee and caffeine diets on calcium mobilization in rat hippocampal neurons were studied. Changes in the basal calcium level in the hippocampal neurons of control and experimental rats kept on a coffee or caffeine diet were measured. We also recorded the changes in the Ca2+ transients’ amplitude evoked by membrane depolarization or emptying the Ca2+ depot of the endoplasmic reticulum (ER) induced by caffeine activator of the ryanodine receptors. In rats on a coffee or caffeine diet, the basal Ca2+ level was increased by 7.4% and 11%, respectively, compared to control animals. In these groups, the amplitude of Ca2+ transients increased by 70% and 90%, respectively, of the basal level in response to the membrane depolarization. In the same groups, the amount of Ca2+ released from the ER was increased by two and three times, respectively, compared to the control after activation of ryanodine receptors. We concluded that long-term coffee and caffeine diets in rats cause a significant disruption of the hippocampal neurons’ endoplasmic reticulum function. The diets evoke an increase in Ca2+ concentration in the neurons and an excessive release of Ca2+ in response to excitation. The latter can lead to increased excitability of neurons and their further death from excessive Ca2+ levels.

Keywords: hippocampal neurons, coffee, caffeine, calcium, ryanodine receptor, endoplasmic reticulum, diet.

References

  1. Geel L, Kinnear M, De Kock R. Relating consumer preferences to sensory attributes of instant coffee. Food Quality and Preference. 2005;16:237-44. CrossRef
  2. Tohda C, Nakamura N, Komatsu K, Hattori M. Trigonellineinduced neurite outgrowth in human neuroblastoma SK-N-SH cells. Biological & pharmaceutical bulletin. 1999;22(7):679-82. CrossRef PubMed
  3. Martucciello S, Masullo M, Cerulli A, Piacente S. Natural Products Targeting ER Stress, and the Functional Link to Mitochondria. Int J Mol Sci. 2020;21(6):1905. CrossRef PubMed PubMedCentral
  4. Walker J, Rohm B, Lang R, Pariza MW, Hofmann T, Somo za V. Identification of coffee components that stimulate dopamine release from pheochromocytoma cells (PC-12). Food and Chemical Toxicology. 2012;50(2):390-8. CrossRef PubMed
  5. Noyce AJ, Bestwick JP, Silveira-Moriyama L, Hawkes CH, Giovannoni G, Lees AJ, et al. Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Ann Neurol. 2012;72(6):893-901. CrossRef PubMed PubMedCentral
  6. Panza F, Solfrizzi V, Barulli MR, Bonfiglio C, Guerra V, Osella A, et al. Coffee, tea, and caffeine consumption and prevention of late-life cognitive decline and dementia: a systematic review. The journal of nutrition, health & aging. 2015;19(3):313-28. CrossRef PubMed
  7. Cano-Marquina A, Tarín JJ, Cano A. The impact of coffee on health. Maturitas. 2013;75(1):7-21. CrossRef PubMed
  8. Petersen OH, Sutton R. Ca2+ signalling and pancreatitis: effects of alcohol, bile and coffee. Trends in pharmacological sciences. 2006;27(2):113-20. CrossRef PubMed
  9. Ding M, Bhupathiraju SN, Satija A, van Dam RM, Hu FB. Long-term coffee consumption and risk of cardiovascular disease: a systematic review and a dose-response metaanalysis of prospective cohort studies. Circulation. 2014;129(6):643-59. CrossRef PubMed PubMedCentral
  10. Hensher C, Vogel J. High-Dose Insulin Euglycemic Therapy in the Treatment of a Massive Caffeine Overdose. Chest. 2020;157(5):e145-e9. CrossRef PubMed
  11. Fernstrom JD. Can nutrient supplements modify brain function? The American journal of clinical nutrition. 2000;71(6 Suppl):1669s-75s. CrossRef PubMed
  12. Battig K, Welzl H. Psychopharmacological profile of caffeine. In: Garattini S, editor. Caffeine, coffee, and health. Monographs of the Mario Negri Institute for Pharmacological Research, Milan. New York: RavenPress; 1993. p. 213-53.
  13. Segal M. Calcium stores regulate excitability in cultured rat hippocampal neurons. Journal of neurophysiology. 2018;120(5):2694-705. CrossRef PubMed
  14. Dobson KL, Jackson C, Balakrishnan S, Bellamy TC. Caffeine Modulates Vesicle Release and Recovery at Cerebellar Parallel Fibre Terminals, Independently of Calcium and Cyclic AMP Signalling. PloS one. 2015;10(5):e0125974. CrossRef PubMed PubMedCentral
  15. Yavorsky VA, Lukyanetz EA. Using the serial ramp recordings for rapid testing of the generating ability of impulse activity of isolated hippocampal neurons. Fiziolohichnyi zhurnal (Kiev, Ukraine : 1994). 2015; 61(3):19-27. CrossRef PubMed
  16. Yavorsky VA, Lukyanetz EA. Pilocarpine-induced epileptiform activity of isolated CA1 hippocampal neurons. Neurophysiology. 1997;29(3):162-7. CrossRef
  17. Yavorsky VA, Lukyanetz EA. Interspike model of neuronal impulse activity. Fiziol Zh. 2009;55(6):135.
  18. Lukyanetz IA, Kostyk PG, Lukyanetz EA. Calcium Signaling in Carassius Cerebellar Neurons: Role of the Mitochondria. Neurophysiology. 2009;41(6):375-9. CrossRef
  19. Lukyanets IA, Lukyanetz EA. Modulation of calcium signalling by the endoplasmic reticulum in Carassius neurons. Biochem Biophys Res Commun. 2013;433(4):591-4. CrossRef PubMed
  20. Lukyanets IA, Lukyanetz EA. Calcium signalling during hypoxia in fish Carasius gibelio. Fiziol Zh. 2009;55(6). CrossRef
  21. Rozumna NM, Shkryl VM, Ganzha VV, Lukyanetz EA. Effects of Modeling of Hypercalcemia and β-Amyloid on Cultured Hippocampal Neurons of Rats. Neurophysiology. 2020;52(5):348-57. CrossRef
  22. Shkryl VM. Error correction due to background subtraction in ratiometric calcium measurements with CCD camera. Heliyon. 2020;6(6):e04180. CrossRef PubMed PubMedCentral
  23. Lukyanetz EA, Neher E. Different types of calcium channels and secretion from bovine chromaffin cells. European Journal of Neuroscience. 1999;11(8):2865-73. CrossRef PubMed
  24. Lukyanetz EA. Different secretory vesicles can be involved in depolarization-evoked exocytosis. Biochemical and Biophysical Research Communications. 2001;288(4):844-8. CrossRef PubMed
  25. Lukyanetz EA. Calcium signaling in secretion of catecholamines in chromaffin cells. Fiziol Zh. 2009; 55(6):110-1.
  26. Lauri SE, Bortolotto ZA, Nistico R, Bleakman D, Ornstein PL, Lodge D, et al. A role for Ca2+ stores in kainate receptor-dependent synaptic facilitation and LTP at mossy fiber synapses in the hippocampus. Neuron. 2003;39(2):327-41. CrossRef
  27. Liang Y, Yuan LL, Johnston D, Gray R. Calcium signaling at single mossy fiber presynaptic terminals in the rat hippocampus. Journal of neurophysiology. 2002;87(2):1132-7. CrossRef PubMed
  28. Sato I, Kamiya H. Assessing the roles of presynaptic ryanodine receptors and adenosine receptors in caffeineinduced enhancement of hippocampal mossy fiber transmission. Neuroscience research. 2011;71(2):183-7. CrossRef
  29. Shimizu H, Fukaya M, Yamasaki M, Watanabe M, Manabe T, Kamiya H. Use-dependent amplification of presynaptic Ca2+ signaling by axonal ryanodine receptors at the hippocampal mossy fiber synapse. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(33):11998-2003. CrossRef PubMed PubMedCentral
  30. Wood PL, Kim HS, Boyar WC, Hutchison A. Inhibition of nigrostriatal release of dopamine in the rat by adenosine receptor agonists: A1 receptor mediation. Neuropharmacology. 1989;28(1):21-5. CrossRef
  31. Solinas M, Ferré S, You ZB, Karcz-Kubicha M, Popoli P, Goldberg SR. Caffeine induces dopamine and glutamate release in the shell of the nucleus accumbens. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2002;22(15):6321-4. CrossRef PubMed PubMedCentral
  32. Ribeiro JA, Sebastião AM. Caffeine and adenosine. Journal of Alzheimer's disease : JAD. 2010;20 Suppl 1:S3-15. CrossRef PubMed
  33. Gerbino A, Russo D, Colella M, Procino G, Svelto M, Milella L, et al. Dandelion Root Extract Induces Intracellular Ca(2+) Increases in HEK293 Cells. Int J Mol Sci. 2018;19(4):1112. CrossRef PubMed PubMedCentral
  34. Thomas RC. Calcium content of the endoplasmic reticulum of snail neurones releasable by caffeine. Cell Calcium. 2013;53(2):120-4. CrossRef PubMed
  35. Stutzmann GE, Mattson MP. Endoplasmic reticulum Ca(2+) handling in excitable cells in health and disease. Pharmacol Rev. 2011;63(3):700-27. CrossRef PubMed PubMedCentral

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.