Effect of caffeine and coffee diets on calcium signalling in rat hippocampal neurons
V.M. Shkryl1, T.G. Turytska2, V.A. Yavorsky1, V.P. Lyashenko2, S.M. Lukashov3, E.A. Lukyanetz1
- Bogomoletz Institute of Physiology National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Dnipro National Oles Honchar University, Dnipro, Ukraine
- Medical center “Headache”, Regional Clinical Hospital N.A. Mechnikov, Dnipro, Ukraine
DOI: https://doi.org/10.15407/fz67.04.037
Abstract
The effects of long-lasting high concentration coffee and caffeine diets on calcium mobilization in rat
hippocampal neurons were studied. Changes in the basal calcium level in the hippocampal neurons of
control and experimental rats kept on a coffee or caffeine diet were measured. We also recorded the changes
in the Ca2+ transients’ amplitude evoked by membrane depolarization or emptying the Ca2+ depot of the
endoplasmic reticulum (ER) induced by caffeine activator of the ryanodine receptors. In rats on a coffee
or caffeine diet, the basal Ca2+ level was increased by 7.4% and 11%, respectively, compared to control
animals. In these groups, the amplitude of Ca2+ transients increased by 70% and 90%, respectively, of the
basal level in response to the membrane depolarization. In the same groups, the amount of Ca2+ released
from the ER was increased by two and three times, respectively, compared to the control after activation
of ryanodine receptors. We concluded that long-term coffee and caffeine diets in rats cause a significant
disruption of the hippocampal neurons’ endoplasmic reticulum function. The diets evoke an increase in
Ca2+ concentration in the neurons and an excessive release of Ca2+ in response to excitation. The latter
can lead to increased excitability of neurons and their further death from excessive Ca2+ levels.
Keywords:
hippocampal neurons, coffee, caffeine, calcium, ryanodine receptor, endoplasmic reticulum, diet.
References
- Geel L, Kinnear M, De Kock R. Relating consumer preferences to sensory attributes of instant coffee. Food Quality and Preference. 2005;16:237-44.
CrossRef
- Tohda C, Nakamura N, Komatsu K, Hattori M. Trigonellineinduced neurite outgrowth in human neuroblastoma SK-N-SH cells. Biological & pharmaceutical bulletin. 1999;22(7):679-82.
CrossRef
PubMed
- Martucciello S, Masullo M, Cerulli A, Piacente S. Natural Products Targeting ER Stress, and the Functional Link to Mitochondria. Int J Mol Sci. 2020;21(6):1905.
CrossRef
PubMed PubMedCentral
- Walker J, Rohm B, Lang R, Pariza MW, Hofmann T, Somo za V. Identification of coffee components that stimulate dopamine release from pheochromocytoma cells (PC-12). Food and Chemical Toxicology. 2012;50(2):390-8.
CrossRef
PubMed
- Noyce AJ, Bestwick JP, Silveira-Moriyama L, Hawkes CH, Giovannoni G, Lees AJ, et al. Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Ann Neurol. 2012;72(6):893-901.
CrossRef
PubMed PubMedCentral
- Panza F, Solfrizzi V, Barulli MR, Bonfiglio C, Guerra V, Osella A, et al. Coffee, tea, and caffeine consumption and prevention of late-life cognitive decline and dementia: a systematic review. The journal of nutrition, health & aging. 2015;19(3):313-28.
CrossRef
PubMed
- Cano-Marquina A, Tarín JJ, Cano A. The impact of coffee on health. Maturitas. 2013;75(1):7-21.
CrossRef
PubMed
- Petersen OH, Sutton R. Ca2+ signalling and pancreatitis: effects of alcohol, bile and coffee. Trends in pharmacological sciences. 2006;27(2):113-20.
CrossRef
PubMed
- Ding M, Bhupathiraju SN, Satija A, van Dam RM, Hu FB. Long-term coffee consumption and risk of cardiovascular disease: a systematic review and a dose-response metaanalysis of prospective cohort studies. Circulation. 2014;129(6):643-59.
CrossRef
PubMed PubMedCentral
- Hensher C, Vogel J. High-Dose Insulin Euglycemic Therapy in the Treatment of a Massive Caffeine Overdose. Chest. 2020;157(5):e145-e9.
CrossRef
PubMed
- Fernstrom JD. Can nutrient supplements modify brain function? The American journal of clinical nutrition. 2000;71(6 Suppl):1669s-75s.
CrossRef
PubMed
- Battig K, Welzl H. Psychopharmacological profile of caffeine. In: Garattini S, editor. Caffeine, coffee, and health. Monographs of the Mario Negri Institute for Pharmacological Research, Milan. New York: RavenPress; 1993. p. 213-53.
- Segal M. Calcium stores regulate excitability in cultured rat hippocampal neurons. Journal of neurophysiology. 2018;120(5):2694-705.
CrossRef
PubMed
- Dobson KL, Jackson C, Balakrishnan S, Bellamy TC. Caffeine Modulates Vesicle Release and Recovery at Cerebellar Parallel Fibre Terminals, Independently of Calcium and Cyclic AMP Signalling. PloS one. 2015;10(5):e0125974.
CrossRef
PubMed PubMedCentral
- Yavorsky VA, Lukyanetz EA. Using the serial ramp recordings for rapid testing of the generating ability of impulse activity of isolated hippocampal neurons. Fiziolohichnyi zhurnal (Kiev, Ukraine : 1994). 2015; 61(3):19-27.
CrossRef
PubMed
- Yavorsky VA, Lukyanetz EA. Pilocarpine-induced epileptiform activity of isolated CA1 hippocampal neurons. Neurophysiology. 1997;29(3):162-7.
CrossRef
- Yavorsky VA, Lukyanetz EA. Interspike model of neuronal impulse activity. Fiziol Zh. 2009;55(6):135.
- Lukyanetz IA, Kostyk PG, Lukyanetz EA. Calcium Signaling in Carassius Cerebellar Neurons: Role of the Mitochondria. Neurophysiology. 2009;41(6):375-9.
CrossRef
- Lukyanets IA, Lukyanetz EA. Modulation of calcium signalling by the endoplasmic reticulum in Carassius neurons. Biochem Biophys Res Commun. 2013;433(4):591-4.
CrossRef
PubMed
- Lukyanets IA, Lukyanetz EA. Calcium signalling during hypoxia in fish Carasius gibelio. Fiziol Zh. 2009;55(6).
CrossRef
- Rozumna NM, Shkryl VM, Ganzha VV, Lukyanetz EA. Effects of Modeling of Hypercalcemia and β-Amyloid on Cultured Hippocampal Neurons of Rats. Neurophysiology. 2020;52(5):348-57.
CrossRef
- Shkryl VM. Error correction due to background subtraction in ratiometric calcium measurements with CCD camera. Heliyon. 2020;6(6):e04180.
CrossRef
PubMed PubMedCentral
- Lukyanetz EA, Neher E. Different types of calcium channels and secretion from bovine chromaffin cells. European Journal of Neuroscience. 1999;11(8):2865-73.
CrossRef
PubMed
- Lukyanetz EA. Different secretory vesicles can be involved in depolarization-evoked exocytosis. Biochemical and Biophysical Research Communications. 2001;288(4):844-8.
CrossRef
PubMed
- Lukyanetz EA. Calcium signaling in secretion of catecholamines in chromaffin cells. Fiziol Zh. 2009; 55(6):110-1.
- Lauri SE, Bortolotto ZA, Nistico R, Bleakman D, Ornstein PL, Lodge D, et al. A role for Ca2+ stores in kainate receptor-dependent synaptic facilitation and LTP at mossy fiber synapses in the hippocampus. Neuron. 2003;39(2):327-41.
CrossRef
- Liang Y, Yuan LL, Johnston D, Gray R. Calcium signaling at single mossy fiber presynaptic terminals in the rat hippocampus. Journal of neurophysiology. 2002;87(2):1132-7.
CrossRef
PubMed
- Sato I, Kamiya H. Assessing the roles of presynaptic ryanodine receptors and adenosine receptors in caffeineinduced enhancement of hippocampal mossy fiber transmission. Neuroscience research. 2011;71(2):183-7.
CrossRef
- Shimizu H, Fukaya M, Yamasaki M, Watanabe M, Manabe T, Kamiya H. Use-dependent amplification of presynaptic Ca2+ signaling by axonal ryanodine receptors at the hippocampal mossy fiber synapse. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(33):11998-2003.
CrossRef
PubMed PubMedCentral
- Wood PL, Kim HS, Boyar WC, Hutchison A. Inhibition of nigrostriatal release of dopamine in the rat by adenosine receptor agonists: A1 receptor mediation. Neuropharmacology. 1989;28(1):21-5.
CrossRef
- Solinas M, Ferré S, You ZB, Karcz-Kubicha M, Popoli P, Goldberg SR. Caffeine induces dopamine and glutamate release in the shell of the nucleus accumbens. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2002;22(15):6321-4.
CrossRef
PubMed PubMedCentral
- Ribeiro JA, Sebastião AM. Caffeine and adenosine. Journal of Alzheimer's disease : JAD. 2010;20 Suppl 1:S3-15.
CrossRef
PubMed
- Gerbino A, Russo D, Colella M, Procino G, Svelto M, Milella L, et al. Dandelion Root Extract Induces Intracellular Ca(2+) Increases in HEK293 Cells. Int J Mol Sci. 2018;19(4):1112.
CrossRef
PubMed PubMedCentral
- Thomas RC. Calcium content of the endoplasmic reticulum of snail neurones releasable by caffeine. Cell Calcium. 2013;53(2):120-4.
CrossRef
PubMed
- Stutzmann GE, Mattson MP. Endoplasmic reticulum Ca(2+) handling in excitable cells in health and disease. Pharmacol Rev. 2011;63(3):700-27.
CrossRef
PubMed PubMedCentral
|