Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2021; 67(2): 53-66


THE ROLE OF HYPOXIA IN THE DEVELOPMENT OF SOME PATHOLOGICAL CONDITIONS AND MALIGNANT TUMORS

N.O. Bogdanova, N.H. Pogorela, E.A. Lukyanetz

    O.O. Bogomolets Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz67.02.053


Abstract

Hypoxia, which could be defined as the level of oxygen tension in the body that is below the normal physiological value, is a process that is often observed in several diseases and occurs in most malignant tumors. On the other hand, in hypoxia several pathological conditions could occur, which could be caused by external and internal factors. During carcinogenesis, hypoxia may promote metastasis and an unfavorable prognosis. When infected with COVID-19, there is a «silent hypoxia», which could asymptomatically destroy the body. The review is devoted to hypoxia’s role in the development of some pathological conditions and malignant tumors.

Keywords: hypoxia; carcinogenesis; exogenous hypoxia; endogenous hypoxia

References

  1. Prabhakar NR. Oxygen sensing by the carotid body chemoreceptors. J Appl Physiol (Bethesda, Md: 1985). 2000;88(6):2287-95. CrossRef PubMed
  2. Prabhakar NR, Peng Y-J. Peripheral chemoreceptors in health and disease. J Appl Physiol. 2004;96(1):359-66. CrossRef PubMed
  3. López-Barneo J, Ortega-Sáenz P, Pardal R, Pascual A, Piruat JI, Durán R, et al. Oxygen sensing in the carotid body. Ann New York Acad Sci. 2009;1177:119-31. CrossRef PubMed
  4. Finley JCW, Polak J, Katz DM. Transmitter diversity in carotid body afferent neurons: Dopaminergic and peptidergic phenotypes. Neuroscience. 1992;51(4): 973-87. CrossRef
  5. Prabhakar NR. Oxygen sensing by the carotid body chemoreceptors. J Appl Physiol. 2000;88(6):2287-95. CrossRef PubMed
  6. Holmes AP, Ray CJ, Coney AM, Kumar P. Is Carotid body physiological O2 sensitivity determined by a unique mitochondrial phenotype? Front Physiol. 2018;9(562). CrossRef PubMed PubMedCentral
  7. López-Barneo J, Ortega-Sáenz P, Pardal R, Pascual A, Piruat JI. Carotid body oxygen sensing. Eur Respir J. 2008;32(5):1386-98. CrossRef PubMed
  8. Chang AJ, Ortega FE, Riegler J, Madison DV, Krasnow MA. Oxygen regulation of breathing through an olfactory receptor activated by lactate. Nature. 2015; 527(7577):240-4. CrossRef PubMed PubMedCentral
  9. Kim D. K(+) channels in O(2) sensing and postnatal development of carotid body glomus cell response to hypoxia. Respir Physiol Neurobiol. 2013;185(1):44-56. CrossRef PubMed PubMedCentral
  10. Yavorskii VA, Pogorelaya NK, Bogdanova NA, Lukyanetz EA. Effect of "chemical" hypoxia on the potassium conductance of the membrane of pheochromocytoma cells. Neurophysiology. 2011;43(3):201-4. CrossRef
  11. Donnelly DF. K+ currents of glomus cells and chemosensory functions of carotid body. Respir Physiol. 1999;115(2):151-60. CrossRef
  12. Kravenska Y, Nieznanska H, Nieznanski K, Lukyanetz E, Szewczyk A, Koprowski P. The monomers, oligomers, and fibrils of amyloid-β inhibit the activity of mitoBKCa channels by a membrane-mediated mechanism. Biochim Biophys Acta - Biomembranes. 2020;1862(9):183337. CrossRef PubMed
  13. Magura IS, Bogdanova NA, Dolgaya EV. Potassium channels and signal transduction pathways in neurons. Neurophysiology. 2015;47(1):71-6. CrossRef
  14. Mahura IS, Dolha OV, Bohdanova NO. Integrative function of nervous cells: role of potassium channels. Fiziol Zh. 2008;54(5):16-22.
  15. Magura IS, Magura OI, Dolga OV, Bogdanova NA, Ageev S, Pogorela N. Signal function of potassium channelsclinical aspects. Fiziol Zh. 2010;56(3):19-24. CrossRef PubMed
  16. Lukyanetz EA, Shkryl VM, Kravchuk OV, Kostyuk PG. Action of hypoxia on different types of calcium channels in hippocampal neurons. Biochim BiophysActa - Biomembranes. 2003;1618(1):33-8. CrossRef PubMed
  17. Lukyanetz EA, Shkryl VM, Kravchuk OV, Kostyuk PG. Effect of hypoxia on calcium channels depends on extracellular calcium in CA1 hippocampal neurons. Brain Res. 2003;980(1):128-34. CrossRef
  18. Shkryl VM, Kostyuk PG, Lukyanetz EA. Dual action of cytosolic calcium on calcium channel activity during hypoxia in hippocampal neurones. NeuroReport. 2001;12(18):4035-9. CrossRef PubMed
  19. Shkryl VM, Nikolaenko LM, Kostyuk PG, Lukyanetz EA. High-threshold calcium channel activity in rat hippocampal neurones during hypoxia. Brain Res. 1999;833(2):319-28. CrossRef
  20. Sotkis AV, Kostyuk PG, Lukyanetz EA. Diversity of single potassium channels in isolated snail neurons. NeuroReport. 1998;9(7):1413-7. CrossRef PubMed
  21. Stanika RI, Kostyuk PG, Lukyanetz EA. Cellular mechanisms of hypoxia-induced changes in the calcium concentration in sensory neurons of the rat. Neurophysiology. 2004;36(1):88. CrossRef
  22. Konovalov AA, Lukyanetz EA. Voltage-operated sodium currents in cortical neurons in hypoxia. Neurophysiology. 1998;30(4-5):253-5. CrossRef
  23. Westerink RH, Ewing AG. The PC12 cell as model for neurosecretion. Acta Physiol. 2008;192(2):273-85. CrossRef PubMed PubMedCentral
  24. Pathological physiology. Tomsk: Publ House of Tomsk Univ; 1994.
  25. Novikov VE, Katunina NP. Pharmacology and biochemistry of hypoxia. Rev Clin Pharmacol Med Ther. 2002;1(2):73-87.
  26. Balykin MV, Sagidova SA, Zharkov AS, Aizyatulova ED, Pavlov DA, Antipov IV. The effect of intermittent hypobaric hypoxia on Hif-1Α expression and morphofunctional changes in the myocardium. Ulyanovsk Med Biol J. 2017;2:126-35.
  27. Kolchinskaya AZ. Secondary tissue hypoxia. Kyiv: Naukova Dumka; 1983.
  28. Ryabov GA. Syndromes of critical conditions. Moscow: Medicine; 1994.
  29. Li X, Kimura H, Hirota K, Sugimoto H, Kimura N, Takahashi N, et al. Hypoxia reduces the expression and anti-inflammatory effects of peroxisome proliferatoractivated receptor-gamma in human proximal renal tubular cells. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association. Eur Renal Assoc. 2007;22(4):1041-51. CrossRef PubMed
  30. Kolchinskaia AZ. Classification of hypoxic states. Patolog Fiziol Eks Terap. 1981(4):3-10.
  31. Das KK, Honnutagi R, Mullur L, Reddy RC, Das S, Majid DSA, et al. Chapter 26 - heavy metals and low-oxygen microenvironment - its impact on liver metabolism and dietary supplementation. In: Watson RR, Preedy VR, editors. Dietary interventions in liver disease: Academic Press; 2019. p. 315-32. CrossRef
  32. Foster JG, Wong SCK, Sharp TV. The hypoxic tumor microenvironment: driving the tumorigenesis of nonsmall-cell lung cancer. Future Oncol. 2014;10(16): 2659-74. CrossRef PubMed
  33. Tirpe AA, Gulei D, Ciortea SM, Crivii C, BerindanNeagoe I. Hypoxia: Overview on hypoxia-mediated mechanisms with a focus on the role of HIF genes. Int J Mol Sci. 2019;20(24). CrossRef PubMed PubMedCentral
  34. Eales KL, Hollinshead KER, Tennant DA. Hypoxia and metabolic adaptation of cancer cells. Oncogenesis. 2016;5(1):e190-e. CrossRef PubMed PubMedCentral
  35. Koh MY, Powis G. Passing the baton: the HIF switch. Trends Biochem Sci. 2012;37(9):364-72. CrossRef PubMed PubMedCentral
  36. Maxwell PH, Wiesener MS, Chang G-W, Clifford SC, Vaux EC, Cockman ME, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygendependent proteolysis. Nature. 1999;399(6733):271-5. CrossRef PubMed
  37. Zhang Y, Strehin I, Bedelbaeva K, Gourevitch D, Clark L, Leferovich J, et al. Drug-induced regeneration in adult mice. Sci Transl Med. 2015; 7(290):290ra92-ra92. CrossRef PubMed PubMedCentral
  38. Ratcliffe PJ. HIF-1 and HIF-2: working alone or together in hypoxia? J Clin Invest. 2007;117(4):862-5. CrossRef PubMed PubMedCentral
  39. Koh MY, Lemos R, Jr., Liu X, Powis G. The hypoxiaassociated factor switches cells from HIF-1α- to HIF-2αdependent signaling promoting stem cell characteristics, aggressive tumor growth and invasion. Cancer Res. 2011;71(11):4015-27. CrossRef PubMed PubMedCentral
  40. Makino Y, Kanopka A, Wilson WJ, Tanaka H, Poellinger L. Inhibitory PAS domain protein (IPAS) is a hypoxiainducible splicing variant of the hypoxia-inducible factor-3alpha locus. J Biol Chem. 2002;277(36):32405-8. CrossRef PubMed
  41. Augstein A, Poitz DM, Braun-Dullaeus RC, Strasser RH, Schmeisser A. Cell-specific and hypoxia-dependent regulation of human HIF-3α: inhibition of the expression of HIF target genes in vascular cells. Cell Mol Life Sci: CMLS. 2011;68(15):2627-42. CrossRef PubMed
  42. Tanaka T, Wiesener M, Bernhardt W, Eckardt KU, Warnecke C. The human HIF (hypoxia-inducible factor)- 3alpha gene is a HIF-1 target gene and may modulate hypoxic gene induction. Biochem J. 2009;424(1):143-51. CrossRef PubMed
  43. Pasanen A, Heikkilä M, Rautavuoma K, Hirsilä M, Kivirikko KI, Myllyharju J. Hypoxia-inducible factor (HIF)-3alpha is subject to extensive alternative splicing in human tissues and cancer cells and is regulated by HIF-1 but not HIF-2. Int J Biochem Cell Biol. 2010;42(7):1189- CrossRef PubMed
  44. Stenmark KR, Fagan KA, Frid MG. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res. 2006;99(7):675-91. CrossRef PubMed
  45. Chakraborty AA, Laukka T, Myllykoski M, Ringel AE, Booker MA, Tolstorukov MY, et al. Histone demethylase KDM6A directly senses oxygen to control chromatin and cell fate. Science. 2019;363(6432):1217-22. CrossRef PubMed PubMedCentral
  46. Gallipoli P, Huntly BJP. Histone modifiers are oxygen sensors. Science. 2019;363(6432):1148-9. CrossRef PubMed
  47. Batie M, Frost J, Frost M, Wilson JW, Schofield P, Rocha S. Hypoxia induces rapid changes to histone methylation and reprograms chromatin. Science. 2019;363(6432):1222-6. CrossRef PubMed
  48. Friederich-Persson M, Persson P, Fasching A, Hansell P, Nordquist L, Palm F. Increased kidney metabolism as a pathway to kidney tissue hypoxia and damage: effects of triiodothyronine and dinitrophenol in normoglycemic rats. Adv Exp Med Biol. 2013;789:9-14. CrossRef PubMed
  49. Chesnokova NP, Ponukalina EV, Bizenkova MN. Modern ideas about the pathogenesis of hypoxia. Classification of hypoxia and trigger mechanisms of their development. Med Sci Modern High Technol. 2006(5):23-5.
  50. Rozova KV, Trepats'ka TV, Horiana LH, Dubova MH, Man'kovs'ka IM. Genetically determined organ-specific changes of some tissue morphometric characteristics under the various exogenous influences. Fiziol Zh. 2007;53(2):8-15.
  51. Rozova KV. Effect of normo- and hypobaric hypoxia on ultrastructure of the lung and myocardial tissue. Fiziol Zh. 2008;54(2):63-8.
  52. Pozhilova EV, V. E. Novikov VE. The role of the factor of adaptation to hypoxia in the development of tumors. Bull Smolensk State Med Acad. 2015;14(3):16-20.
  53. Jing X, Yang F, Shao C, Wei K, Xie M, Shen H, et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer. 2019;18(1):157. CrossRef PubMed PubMedCentral
  54. Rozova KV. Structurally conditioned mitochondrial response to hypoxia and neurodegeneration. Kyiv: Knowledge of Ukraine; 2019.
  55. Damon DH, D'Amore PA, Wagner JA. Nerve growth factor and fibroblast growth factor regulate neurite outgrowth and gene expression in PC12 cells via both protein kinase C- and cAMP-independent mechanisms. J Cell Biol. 1990;110(4):1333-9. CrossRef PubMed PubMedCentral
  56. Koblyakov VA. Hypoxia and glycolysis as possible objects of antitumor action. Adv Mol Oncol. 2014(2):44-9.
  57. Novikov VY, Levchenkova OS. Inhibitors of the regulatory factor of adaptation to hypoxia. Bull Smolensk State Med Acad. 2014;13(1):40-5.
  58. Schumacker PT. Lung cell hypoxia: role of mitochondrial reactive oxygen species signaling in triggering responses. Proc Am Thorac Soc. 2011;8(6):477-84. CrossRef PubMed PubMedCentral
  59. Arias-Stella J, Saldana M. The terminal portion of the pulmonary arterial tree in people native to high altitudes. Circulation. 1963;28:915-25. CrossRef PubMed
  60. Sirotinin NN. Life on altitudes and altitude sickness. Kyiv 1939.
  61. Sirotinin NN. Hypoxia and its significance in pathology. Pathology. 1949:19-27.
  62. Moiseenko EV, Rozova KV, Yanchiy RI. Aspects of the study of multilevel mechanisms of human adaptation to the extreme conditions of Antarctica. Factors Exp Evolut Organisms. 2018(23):218-25. CrossRef
  63. Pak O, Aldashev A, Welsh D, Peacock A. The effects of hypoxia on the cells of the pulmonary vasculature. Eur Respir J . 2007;30(2):364-72. CrossRef PubMed
  64. Gibbons GH, Dzau VJ. The emerging concept of vascular remodeling. N Engl J Med. 1994;330(20):1431-8. CrossRef PubMed
  65. Nicolls MR, Voelkel NF. Hypoxia and the lung: beyond hypoxic vasoconstriction. Antioxid Redox Signal. 2007;9(6):741-3. CrossRef PubMed PubMedCentral
  66. Lisyanskaya OY. Hypoxia is the leading factor in the progression of chronic kidney disease. Kidneys. 2016;1(15):2307-1257. CrossRef
  67. Muz B, de la Puente P, Azab F, Azab AK. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckland, NZ). 2015;3:83-92. CrossRef PubMed PubMedCentral
  68. O'Driscoll CM, Gorman AM. Hypoxia induces neurite outgrowth in PC12 cells that is mediated through adenosine A2A receptors. Neuroscience. 2005;131(2):321-9. CrossRef PubMed
  69. Mingorance-Le Meur A, Mohebiany AN, O'Connor TP. Varicones and growth cones: two neurite terminals in PC12 cells. PloS One. 2009;4(2):e4334. CrossRef PubMed PubMedCentral
  70. Martin TF, Grishanin RN. PC12 cells as a model for studies of regulated secretion in neuronal and endocrine cells. Methods Cell Biol. 2003;71:267-86. CrossRef
  71. Simiantonaki N, Taxeidis M, Jayasinghe C, Kurzik-Dumke U, Kirkpatrick CJ. Hypoxia-inducible factor 1 alpha expression increases during colorectal carcinogenesis and tumor progression. BMC Cancer. 2008;8(1):320. CrossRef PubMed PubMedCentral
  72. Hatfield SM, Kjaergaard J, Lukashev D, Schreiber TH, Belikoff B, Abbott R, et al. Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci Transl Med. 2015;7(277):277ra30. CrossRef PubMed PubMedCentral
  73. Palazon A, Goldrath AW, Nizet V, Johnson RS. HIF transcription factors, inflammation, and immunity. Immunity. 2014;41(4):518-28. CrossRef PubMed PubMedCentral
  74. Zeng W, Liu P, Pan W, Singh SR, Wei Y. Hypoxia and hypoxia inducible factors in tumor metabolism. Cancer Lett. 2015;356(2 Pt A):263-7. CrossRef PubMed
  75. Leone RD, Horton MR, Powell JD. Something in the air: hyperoxic conditioning of the tumor microenvironment for enhanced immunotherapy. Cancer Cell. 2015;27(4):435-6. CrossRef PubMed PubMedCentral
  76. Jin X, Dai L, Ma Y, Wang J, Liu Z. Implications of HIF-1α in the tumorigenesis and progression of pancreatic cancer. Cancer Cell Int. 2020;20(1):273. CrossRef PubMed PubMedCentral
  77. Sriram K, Insel P, Rohit Loomba R. What is the ACE2 receptor, how is it connected to coronavirus and why might it be key to treating COVID-19? The experts explain. Conversation. 2020.
  78. Herrmann J, Mori V, Bates JHT, Suki B. Modeling lung perfusion abnormalities to explain early COVID-19 hypoxemia. Nat Commun. 2020;11(1):4883. CrossRef PubMed PubMedCentral
  79. Suri JC, Ingale F. Decoding silent hypoxia in Covid patients: Blue lips, changing skin colour, sweating for no reason. Economic Time. 2020.
  80. Colarossi J. Three reasons why COVID-19 can cause silent hypoxia: Biomedical engineers use computer modeling to investigate low blood oxygen in COVID-19 patients. Sci Daily. 2020.
  81. Carreau A, El Hafny-Rahbi B, Matejuk A, Grillon C, Kieda C. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J Cell Mol Med. 2011;15(6):1239-53. CrossRef PubMed PubMedCentral

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.