Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2021; 67(1): 57-66


ROLE OF MITOCHONDRIAL DISFUNCTION IN THE DEVELOPMENT OF ALZHEIMER’S DISEASE

V.V. Ganzha, E.A. Lukyanetz

  1. Bogomoletz Institute of physiology NAS of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz67.01.057


Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by memory loss and multiple cognitive impairments. Several decades of intensive research have shown that multicellular changes are involved in AD’s development and progression, including mitochondrial damage, synaptic dysfunction, formation and accumulation of beta-amyloid (Aβ), formation and accumulation of hyperphosphorylated tau protein, and loss of neurons in patients with this disease. Among them, mitochondrial dysfunction and synaptic damage are the primary manifestations in the disease process. Recent studies have also shown that defective mitophagy caused by Aβ and tau protein are the main indicators in AD’s pathogenesis. This review includes an overview of recent researches on the role of mitochondria in AD development. The review summarizes several aspects of mitochondrial dysfunction, including abnormal mitochondrial dynamics, changes in mitochondrial DNA, and calcium dyshomeostasis in AD pathogenesis

Keywords: Alzheimer’s disease; β-amyloi; τ-protein; calcium; hippocampal neurons; mitochondria; mitochondrial dysfunction.

References

  1. Moneim AE. Oxidant/Antioxidant imbalance and the risk of Alzheimer's disease. Current Alzheimer Res. 2015;12(4):335-49. CrossRef PubMed PubMedCentral
  2. Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH, et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet. 2006;38(5):515-7. CrossRef PubMed
  3. Buee L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof PR. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev. 2000;33(1):95-130. CrossRef
  4. Calkins MJ, Manczak M, Reddy PH. Mitochondriatargeted antioxidant ss31 prevents amyloid beta-induced mitochondrial abnormalities and synaptic degeneration in Alzheimer's disease. Pharmaceuticals (Basel). 2012;5(10):1103-19. CrossRef PubMed PubMedCentral
  5. Cardoso S, Seica RM, Moreira PI. Mitochondria as a target for neuroprotection: implications for Alzheimer's disease. Expert Rev Neurother. 2017;2016/07/08(1):77-91. CrossRef PubMed
  6. Caspersen C, Wang N, Yao J, Sosunov A, Chen X, Lustbader JW, et al. Mitochondrial Abeta: a potential focal point for neuronal metabolic dysfunction in Alzheimer's disease. FASEB J. 2005;2005/10/06(14):2040-1. CrossRef PubMed
  7. Darvesh AS, Carroll RT, Bishayee A, Geldenhuys WJ, Van der Schyf CJ. Oxidative stress and Alzheimer's disease: dietary polyphenols as potential therapeutic agents. Expert Rev Neurother. 2010;10(5):729-45. CrossRef PubMed
  8. Shefa U, Jeong NY, Song IO, Chung HJ, Kim D, Jung J, et al. Mitophagy links oxidative stress conditions and neurodegenerative diseases. Neural Regen Res. 2019;14(5):749-56. CrossRef PubMed PubMedCentral
  9. Eckert A, Schmitt K, Götz J. Mitochondrial dysfunction - the beginning of the end in Alzheimer's disease? Separate and synergistic modes of tau and amyloid-OI toxicity. Alzheimers Res Ther. 2011;3(2):15-. CrossRef PubMed PubMedCentral
  10. Selkoe DJ. Alzheimer's disease: genes, proteins, and therapy. Physiol Rev. 2001;81(2):741-66. CrossRef PubMed
  11. Gong CX, Grundke-Iqbal I, Iqbal K. Targeting tau protein in Alzheimer's disease. Drugs Aging. 2010;27(5):351-65. CrossRef PubMed
  12. Gwon AR, Park JS, Arumugam TV, Kwon YK, Chan SL, Kim SH, et al. Oxidative lipid modification of nicastrin enhances amyloidogenic Oi-secretase activity in Alzheimer's disease. Aging Cell. 2012; 2012/04/09(4):559-68. CrossRef PubMed PubMedCentral
  13. Reiss AB, Arain HA, Stecker MM, Siegart NM, Kasselman LJ. Amyloid toxicity in Alzheimer's disease. Rev Neurosci. 2018;29(6):613-27. CrossRef PubMed
  14. Hauptmann S, Scherping I, Drose S, Brandt U, Schulz KL, Jendrach M, et al. Mitochondrial dysfunction: an early event in Alzheimer pathology accumulates with age in AD transgenic mice. Neurobiol Aging. 2009;30(10):1574-86. CrossRef PubMed
  15. Reddy PH, Manczak M, Yin X, Grady MC, Mitchell A, Tonk S, et al. Protective effects of indian spice curcumin against amyloid-OI in Alzheimer's disease. J Alzheimers Dis. 2018;61(3):843-66. CrossRef PubMed PubMedCentral
  16. Reddy PH, Tripathi R, Troung Q, Tirumala K, Reddy TP, Anekonda V, et al. Abnormal mitochondrial dynamics and synaptic degeneration as early events in Alzheimer's disease: implications to mitochondriatargeted antioxidant therapeutics. Biochim Biophys Acta. 2012;1822(5):639-49. CrossRef PubMed PubMedCentral
  17. Hoglinger GU, Lannuzel A, Khondiker ME, Michel PP, Duyckaerts C, et al. The mitochondrial complex I inhibitor rotenone triggers a cerebral tauopathy. J Neurochem. 2005;95(4):930-9. CrossRef PubMed
  18. Hou Y, Ghosh P, Wan R, Ouyang X, Cheng H, Mattson MP, et al. Permeability transition pore-mediated mitochondrial superoxide flashes mediate an early inhibitory effect of amyloid beta1-42 on neural progenitor cell proliferation. Neurobiol Aging. 2014;35(5):975-89. CrossRef PubMed PubMedCentral
  19. Jazin EE, Cavelier L, Eriksson I, Oreland L, Gyllensten U. Human brain contains high levels of heteroplasmy in the noncoding regions of mitochondrial DNA. Proc Natl Acad Sci USA. 1996;93(22):12382-7. CrossRef PubMed PubMedCentral
  20. Lakatos A, Derbeneva O, Younes D, Keator D, Bakken T, Lvova M, et al. Association between mitochondrial DNA variations and Alzheimer's disease in the ADNI cohort. Neurobiol Aging. 2010;31(8):1355-63. CrossRef PubMed PubMedCentral
  21. Leuner K, Miller WE, Reichert AS. From mitochondrial dysfunction to amyloid beta formation: novel insights into the pathogenesis of Alzheimer's disease. Mol Neurobiol. 2012;46(1):186-93. CrossRef PubMed
  22. Lin MT, Simon DK, Ahn CH, Kim LM, Beal MF. High aggregate burden of somatic mtDNA point mutations in aging and Alzheimer's disease brain. Hum Mol Genet. 2002;11(2):133-45. CrossRef PubMed
  23. Pagani L, Eckert A. Amyloid-beta interaction with mitochondria. Int J Alzheimers Dis. 2011:925050. CrossRef PubMed PubMedCentral
  24. Chinnery PF, Johnson MA, Wardell TM, Singh-Kler R, Hayes C, Brown DT, et al. The epidemiology of pathogenic mitochondrial DNA mutations. Ann Neurol. 2000;48(2):188-93. CrossRef
  25. Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, et al. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature. 1987;325(6106):733-6. CrossRef PubMed
  26. Kar S, Slowikowski SP, Westaway D, Mount HT. Interactions between beta-amyloid and central cholinergic neurons: implications for Alzheimer's disease. J Psychiat Neurosci. 2004;29(6):427-41.
  27. Swerdlow RH. Brain aging, Alzheimer's disease, and mitochondria. Biochim Biophys Acta. 2011; 1812(12):1630-9. CrossRef PubMed PubMedCentral
  28. Jayadev S, Leverenz JB, Steinbart E, Stahl J, Klunk W, Yu CE, et al. Alzheimer's disease phenotypes and genotypes associated with mutations in presenilin 2. Brain. 2010;133(Part 4):1143-54. CrossRef PubMed PubMedCentral
  29. Hung CH-L, Ho YS, Chang RC-C. Modulation of mitochondrial calcium as a pharmacological target for Alzheimer's disease. Aging Res Rev. 2010;9(4):447-56. CrossRef PubMed
  30. Sisodia SS, Annaert W, Kim SH, De SB. Gammasecretase: never more enigmatic. Trends Neurosci. 2001;24(Suppl 11):S2-S6. CrossRef
  31. Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC, et al. National Institute on AgingAlzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease. Alzheimers Dement. 2012;8(1):1-13. CrossRef PubMed PubMedCentral
  32. Hardy JA, Higgins GA. Alzheimer's disease: the amyloid cascade hypothesis. Science. 1992;256(5054):184-5. CrossRef PubMed
  33. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science. 2002;297(5580):353-6. CrossRef PubMed
  34. Maruszak A, Żekanowski C. Mitochondrial dysfunction and Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiat. 2011;35(2):320-30. CrossRef PubMed
  35. Lin MT, Simon DK, Ahn CH, Kim LM, Beal MF. High aggregate burden of somatic mtDNA point mutations in aging and Alzheimer's disease brain. Hum Mol Genet. 2002;11(2):133-45. CrossRef PubMed
  36. Mattson MP, Fu W, Waeg G, Uchida K. 4-Hydroxynonenal, a product of lipid peroxidation, inhibits dephosphorylation of the microtubule-associated protein tau. NeuroReport. 1997;8(9-10):2275-81. CrossRef PubMed
  37. Melov S, Adlard PA, Morten K, Johnson F, Golden TR, Hinerfeld D, et al. Mitochondrial oxidative stress causes hyperphosphorylation of tau. PLoS One. 2007;2(6):e536-e. CrossRef PubMed PubMedCentral
  38. Götz J, Ittner LM. Animal models of Alzheimer's disease and frontotemporal dementia. Nat Rev Neurosci. 2008;9(7):532-44. CrossRef PubMed
  39. Kostyk PG, Kostyuk EP, Lukyanetz EA. Intracellular calcium signaling - structures and functions. Kyiv: Naukova Dumka; 2010. 176 p.
  40. Kostyuk PG, Lukyanetz EA. Intracellular calcium signaling - basic mechanisms and possible alterations. Bioelectromagnetics Current Concepts: Springer Netherlands; 2006. p. 87-122. CrossRef
  41. Lukyanets IA, Lukyanetz EA. Calcium signalling during hypoxia in fish Carasius gibelio. Fiziol Zh. 2009;55(6). CrossRef
  42. Lukyanets IA, Lukyanetz EA. Modulation of calcium signalling by the endoplasmic reticulum in Carassius neurons. Biochem Biophys Res Commun. 2013;433(4):591-4. CrossRef PubMed
  43. Lukyanets IA, Yavorskaya EN, Tokar' SL, Lukyanetz EA. Roles of the mitochondria and endoplasmic reticulum in calcium elevation during osmotic shock in adrenocortical cells. Neurophysiology. 2002;34(2-3):177-9. CrossRef
  44. Lukyanetz EA, Shkryl VM, Kravchuk OV, Kostyuk PG. Action of hypoxia on different types of calcium channels in hippocampal neurons. Biochim Biophys Acta - Biomembranes. 2003;1618(1):33-8. CrossRef PubMed
  45. Lukyanetz EA, Shkryl VM, Kravchuk OV, Kostyuk PG. Effect of hypoxia on calcium channels depends on extracellular calcium in CA1 hippocampal neurons. Brain Res. 2003;980(1):128-34. CrossRef
  46. Lukyanetz EA, Stanika RI, Koval LM, Kostyuk PG. Intracellular mechanisms of hypoxia-induced calcium increase in rat sensory neurons. Arch Biochem Biophys. 2003;410(2):212-21. CrossRef
  47. Lukyanetz IA, Kostyk PG, Lukyanetz EA. The involvement of calcium transport systems of the plasma membrane in calcium exchange in neurons of the Carassius gibelio cerebellum. Neurophysiology. 2009;41(4):231-7. CrossRef
  48. Lukyanetz IA, Kostyk PG, Lukyanetz EA. Calcium signaling in Carassius cerebellar neurons: Role of the mitochondria. Neurophysiology. 2009;41(6):375-9. CrossRef
  49. Kravenska EV, Chopovska VV, Yavorskaya EN, Lukyanetz EA. The role of mitochondria in the development of Alzheimer's disease. Tavrichesky Med-Biol Bull. 2012;15(3/2):147-9.
  50. Kravenska EV, Ganzha VV, Yavorskaya EN, Lukyanetz EA. Effect of cyclosporin a on the viability of hippocampal cells cultured under conditions of modeling of Alzheimer's disease. Neurophysiology. 2016;48(4):246-51. CrossRef
  51. Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer's disease. Redox Biol. 2018;14:450-64. CrossRef PubMed PubMedCentral
  52. Meier T, Buyse G. Idebenone: an emerging therapy for Friedreich ataxia. J Neurol. 2009;256 Suppl 1:25-30. CrossRef PubMed
  53. Witte ME, Geurts JJG, de Vries HE, van der Valk P, van Horssen J. Mitochondrial dysfunction: a potential link between neuroinflammation and neurodegeneration? Mitochondrion. 2010;2010/06/01(5):411-8. CrossRef PubMed
  54. Phillips NR, Simpkins JW, Roby RK. Mitochondrial DNA deletions in Alzheimer's brains: a review. Alzheimers Dement. 2014;2013/07/11(3):393-400. CrossRef PubMed PubMedCentral
  55. Zhu X, Perry G, Smith MA, Wang X. Abnormal mitochondrial dynamics in the pathogenesis of Alzheimer's disease. J Alzheimers Dis. 2013;33 Suppl 1 (0 1):S253-S62. CrossRef PubMed PubMedCentral
  56. Mutisya EM, Bowling AC, Beal MF. Cortical cytochrome oxidase activity is reduced in Alzheimer's disease. J Neurochem. 1994;63(6):2179-84. CrossRef PubMed
  57. Morris GP, Clark IA, Vissel B. Inconsistencies and controversies surrounding the amyloid hypothesis of Alzheimer's disease. Acta Neuropathol Commun. 2014;2:135. CrossRef PubMed PubMedCentral
  58. Morris JK, Honea RA, Vidoni ED, Swerdlow RH, Burns JM. Is Alzheimer's disease a systemic disease? Biochim Biophys Acta. 2014;2014/04/18(9):1340-9. CrossRef PubMed PubMedCentral
  59. Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK. Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer's disease brain is associated with mitochondrial dysfunction. J Neurosci. 2006;26(35):9057-68. CrossRef PubMed PubMedCentral
  60. Mitophagy: Department of Anatomy, Chungnam National University School of Medicine, Daejeon, Republic of Korea; 2013. Available from: http://visnu528.blogspot. com/2013/04/mitophagy.html.
  61. Ge P, Dawson VL, Dawson TM. PINK1 and Parkin mitochondrial quality control: a source of regional vulnerability in Parkinson's disease. Mol Neurodegener. 2020;15(1):20. CrossRef PubMed PubMedCentral
  62. Jin SM, Youle RJ. PINK1- and Parkin-mediated mitophagy at a glance. J Cell Sci. 2012;125(Pt 4):795-9. CrossRef PubMed PubMedCentral
  63. Cai Q, Jeong YY. Mitophagy in Alzheimer's disease and other age-related neurodegenerative diseases. Cells. 2020;9(1):150. CrossRef PubMed PubMedCentral
  64. Fang EF, Hou Y, Palikaras K, Adriaanse BA, Kerr JS, Yang B, et al. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer's disease. Nat Neurosci. 2019;22(3):401-12. CrossRef PubMed PubMedCentral
  65. Chakravorty A, Jetto CT, Manjithaya R. Dysfunctional mitochondria and mitophagy as drivers of Alzheimer's disease pathogenesis. Front Aging Neurosci. 2019; 11(311). CrossRef PubMed PubMedCentral
  66. Scheibye-Knudsen M, Fang EF, Croteau DL, Wilson DM, 3rd, Bohr VA. Protecting the mitochondrial powerhouse. Trends Cell Biol. 2015;25(3):158-70. CrossRef PubMed PubMedCentral
  67. Fang EF, Hou Y, Palikaras K, Adriaanse BA, Kerr JS, Yang B, et al. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer's disease. Nat Neurosci. 2019;22(3):401-12. CrossRef PubMed PubMedCentral
  68. Sorrentino V, Romani M, Mouchiroud L, Beck JS, Zhang H, D'Amico D, et al. Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity. Nature. 2017;552(7684):187-93. CrossRef PubMed PubMedCentral
  69. Lautrup S, Lou G, Aman Y, Nilsen H, Tao J, Fang EF. Microglial mitophagy mitigates neuroinflammation in Alzheimer's disease. Neurochem Int. 2019;129:104469. CrossRef PubMed

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.