Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2020; 66(6): 97-103


A.P. Lytvynenko, T.Yu. Voznesenskaya, R.I. Janchij

    O.O. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine


Sirtuin1 (SIRT1) – is NAD(+)-dependent deacetylase, which possess significant roles in apoptosis, cell cycle, cell senescence, mitochondrial function, and metabolism. SIRT1 is widely expressed in all intestinal epithelial cells and is an important regulator of autophagy. Macroautophagy plays a key role in maintaining intestinal homeostasis, in regulating the interaction between gut microbiota and innate and adaptive immunity, the integrity of the epithelial barrier and the immune response of the mucous membrane. Nowadays SIRT-dependent mechanisms of autophagy of intestinal cells remain not fully structured and studied. Therefore, the aim of the current review is collection, analysis and synthesis of literature data of the role of SIRT1 in the regulation of autophagy in intestinal cells.

Keywords: sirtuin1; autophagy; intestinal cells.


  1. Wellman AS, Metukuri MR, Kazgan N, Xu X, Xu Q et al. Intestinal epithelial Sirtuin 1 regulates intestinal inflammation during aging in mice by altering the intestinal icrobiota. Gastroenterology. 2017 Sept; 153(3):772-86. CrossRef PubMed PubMedCentral
  2. Lee J, Koehler J, Yusta B, Bahrami J, Matthews D, Rafii M, et al. Enteroendocrine-derived glucagon-like peptide-2 controls intestinal amino acid transport. Mol Metab. 2017;6(3):245-55. CrossRef PubMed PubMedCentral
  3. Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Sell. 2004;6(4):463-77. CrossRef
  4. Xie W, Zhou J. Aberrant regulation of autophagy in mammalian diseases. Biol Lett. 2018 Jan;14(1):20170540. CrossRef PubMed PubMedCentral
  5. Ziman B, Karabinis P, Barghouth P, Oviedo NJ. Sirtuin-1 regulates organismal growth by altering feeding behavior and intestinal morphology in planarians. J Cell Sci. 2020.133(10):jcs239467. CrossRef PubMed
  6. Lee J, Koehler J, Yusta B, Bahrami J, Matthews D, Rafii M, et al. Enteroendocrine-derived glucagon-like peptide-2 controls intestinal amino acid transport. Mol Metab. 2017;6(3):245-55. CrossRef PubMed PubMedCentral
  7. Jing HR, Luo FW, Liu XM, Tian XF, Zhou Y. Fish oil alleviates liver injury induced by intestinal ischemia/ reperfusion via AMPK/SIRT-1/autophagy pathway. World J Gastroenterol. 2018 Feb 21;24(7):833-43. CrossRef PubMed PubMedCentral
  8. Kaur J, Debnath J. Autophagy at the crossroads of catabolism and anabolism. Nat Rev Mol Cell Biol. 2015;16(8):461-72. CrossRef PubMed
  9. Kovaleva OV, Shitova MS, Zborovskaya IB. Autophagy: cell death or survival strategy? ONCO. 2014;7(2):103-13.
  10. Li WW, Li J, Bao JK. Microautophagy: lesser-known selfeating. Cell Mol Life Sci. 2012;69(7):1125-36. CrossRef PubMed
  11. Haq S, Grondin J, Banskota S, Khan WI. Autophagy: roles in intestinal mucosal homeostasis and inflammation. J Biomed Sci. 2019 Feb 14;26 (1):19. CrossRef PubMed PubMedCentral
  12. Lassen KG, Xavier RJ. Mechanisms and function of autophagy in intestinal disease. Autophagy. 2018; 14(2):216-20. CrossRef PubMed PubMedCentral
  13. Benjamin JL, Sumpter R Jr, Levine B, Hooper LV. Intestinal epithelial autophagy is essential for host defense against invasive bacteria. Cell Host Microbe. 2013;13(6):723-34. CrossRef PubMed PubMedCentral
  14. Lassen KG, Kuballa P, Conway KL, Patel KK, Becker CE, Peloquin JM, et al. Atg16L1 T300A variant decreases selective autophagy resulting in altered cytokine signaling and decreased antibacterial defense. Proc Natl Acad Sci USA. 2014;111(21):7741-6. CrossRef PubMed PubMedCentral
  15. Wlodarska M, Thaiss CA, Nowarski R, Henao-Mejia J, Zhang JP, Brown EM, et al. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell. 2014;156(5):1045-59. CrossRef PubMed PubMedCentral
  16. Patel KK, Miyoshi H, Beatty WL, Head RD, Malvin NP, Cadwell K, et al. Autophagy proteins control goblet cell function by potentiating reactive oxygen species production. EMBO J. 2013;32(24):3130-44. CrossRef PubMed PubMedCentral
  17. Cullen TW, Schofield WB, Barry NA, Putnam EE, Rundell EA, Trent MS, et al. Gut microbiota. Antimicrobial peptide resistance mediates resilience of prominent gut commensals during inflammation. Science. 2015; 347(6218):170-5. CrossRef PubMed PubMedCentral
  18. Hodin CM, Lenaerts K, Grootjans J, de Haan JJ, Hadfoune M, Verheyen FK, et al. Starvation compromises Paneth cells. Am J Pathol. 2011;179(6):2885-93. CrossRef PubMed PubMedCentral
  19. Bel S, Pendse M, Wang Y, Li Y, Ruhn KA, Hassell B, et al. Paneth cells secrete lysozyme via secretory autophagy during bacterial infection of the intestine. Science. 2017; 357(6355):1047-52. CrossRef PubMed PubMedCentral
  20. Gunawardene AR, Corfe BM, Staton CA. Classification and functions of enteroendocrine cells of the lower gastrointestinal tract. Int J Exp Pathol. 2011; 92(4):219-31. CrossRef PubMed PubMedCentral
  21. Kabat AM, Pott J, Maloy KJ. The mucosal immune system and its regulation by autophagy. Front Immunol. 2016;7:240. CrossRef PubMed PubMedCentral
  22. Baxt LA, Xavier RJ. Role of autophagy in the maintenance of intestinal homeostasis. Gastroenterology. 2015;149(3):553-62. CrossRef PubMed PubMedCentral
  23. Strisciuglio C, Duijvestein M, Verhaar AP, Vos AC, van den Brink GR, Hommes DW, et al. Impaired autophagy leads to abnormal dendritic cell-epithelial cell interactions. J Crohns Colitis. 2013;7(7):534-41. CrossRef PubMed
  24. Kovacs JR, Li C, Yang Q, Li G, Garcia IG, Ju S, et al. Autophagy promotes T-cell survival through degradation of proteins of the cell death machinery. Cell Death Differ. 2012;19(1):144-52. CrossRef PubMed PubMedCentral
  25. Winnik S, Auwerx J, Sinclair DA, Matter CM, et al., Protective effects of sirtuins in cardiovascular diseases: from bench to bedside. Eur Heart J. 2015 Jun;1-13. CrossRef PubMed PubMedCentral
  26. Voznesenskaya TY, Stupchuk MS, Kaleinikova ON, Blashkiv TV. SIRT1 as a key cell regulator of metabolism and oxidative stress. Bull Probl Biol Med. 2018;1(142): 20-5. [Ukrainian]. CrossRef
  27. Powell AS, Bowman J, Bowman JD, Choudhury M. Resveratrol: An epigenetic regulator of SIRT1 - is it a magic tool to prevent cardiovascular disease? Emerging Applications, Perspectives, and Discoveries in Cardiovascular Research. 2017;16:288-308. CrossRef
  28. Li C, Zhou Y, Rychahou P, Weiss HL, Lee EY, Perry CL, et al. SIRT2 contributes to the regulation of intestinal cell proliferation and differentiation. cel and mol gastroenter and hepatol. 2020;10(1):43-57. CrossRef PubMed PubMedCentral
  29. Wang T, Cao Y, Zheng Q, Chin YE, Chen G, Cheng J. SENP1-Sirt3 signaling controls mitochondrial protein acetylation and metabolism. Mol Cell. 2019 Aug;75(4):823-34. CrossRef PubMed
  30. Meng H, Yan W-Y, Lei Y-H, Wan Z, Hou Y-Y, Sun L-K and Zhou J-P. SIRT3 regulation of mitochondrial quality control in neurodegenerative diseases. Front Aging Neurosci. 2019;11:313. CrossRef PubMed PubMedCentral
  31. Zeng Z, Yang Y, Dai X, Xu S, Li T, Zhang Q, Zhao KS, Chen Z. Polydatin ameliorates injury to the small intestine induced by hemorrhagic shock via SIRT3 activation-mediated mitochondrial protection. Expert Opin Ther Targets. 2016 Jun;20(6):645-52. CrossRef PubMed
  32. Wang YQ, Wang HL, Xu J, Tan J, Fu LN, Wang JL, et al. Sirtuin5 contributes to colorectal carcinogenesis by enhancing glutaminolysis in a deglutarylation-dependent manner. Nat Commun. 2018;9:545. CrossRef PubMed PubMedCentral
  33. Wang C, Yang W, Dong F, Guo Y, Tan J, Ruan S, et al. The prognostic role of Sirt1 expression in solid malignancies: a meta-analysis. Oncotarget. 2017(8):66343-51. CrossRef PubMed PubMedCentral
  34. Cansu ES. Studying the role of Sirtuin-1 gene in the maintenance of mouse intestinal epithelium. Helsingfors universitet. 2015:95.
  35. Wu Y, Li X, Zhu JX, Xie W, Le W, Fan Z, Jankovic J, Pan T. Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson's disease. Neurosignals. 2011;19:163-74. CrossRef PubMed PubMedCentral
  36. Igarashi M, Guarente L. mTORC1 and SIRT1 cooperate to foster expansion of gut adult stem cells during calorie restriction. Cell. 2016;166:436-50. CrossRef PubMed
  37. Ke R, Xu Q, Li C, Luo L, Huang D. Mechanisms of AMPK in the maintenance of ATP balance during energy metabolism. Cell Biol Int. 2018; 42:384-92. CrossRef PubMed
  38. Liang D, Zhuo Y, Guo Z, He L, Wang X, He Y, Li L, Dai H. SIRT1/PGC-1 pathway activation triggers autophagy/ mitophagy and attenuates oxidative damage in intestinal epithelial cells. Biochimie. 2020 Mar;170:10-20. CrossRef PubMed
  39. Peña-Villalobos I, Casanova-Maldonado I, Lois P, Sabat P, Palma V. Adaptive physiological and morphological adjustments mediated by intestinal stem cells in response to food availability in mice. Front Physiol. 2019; 9:1821. CrossRef PubMed PubMedCentral
  40. Liu T, Ma X, Quyang T. SIRT1 reverses senescence via enhancing autophagy and attenuates oxidative stressinduced apoptosis through promoting p53 degradation.Int J Biol Macromol. 2018; 117:225-34. CrossRef PubMed
  41. Bonkowski MS, Sinclair DA. Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds. Nat Rev Mol Cell Biol. 2016;17:679-90. CrossRef PubMed PubMedCentral
  42. Stupchuk MS, Yanchiy RI, Voznesenska TY. Role of sirtuins in change on the functional status of oocytes and cumulus cells of female mice under conditions of the systemic immune injury. Fiziol Zh. 2019;65(1):34- CrossRef
  43. [Ukrainian].
  44. Lee IH. Mechanisms and disease implications of sirtuinmediated autophagic regulation. Exp Mol Med. 2019; 51 (102):1-11. CrossRef PubMed PubMedCentral

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.