Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2020; 66(6): 88-96


THE ROLE OF BETA-AMYLOID IN NORM AND AT ALZHEIMER`S DISEASE

Yu. N. Tyshchenko, E.A. Lukyanetz

    O.O. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz66.06.088


Abstract

Alzheimer’s disease (AD) is a neurodegenerative disease characterized by progressive cognitive impairment and memory loss. The pathogenesis of AD is complex, depends on many factors, and has not yet been fully studied. Extracellular deposits of amyloid-β (Aβ) peptide in the form of senile plaques, the formation of intracellular neurofibrillary tangles, and massive neuronal loss are considered as the main pathological signs of AD. However, recently there have been many data that indicate other pathways involved in the pathogenesis of AD. This review aims to analyze the existing data on the physiological role of Aβ in the brain under normal conditions and its pathological role in Alzheimer’s disease.

Keywords: amyloid-β; Alzheimer’s disease; cognitive functions; neurodegeneration.

References

  1. Alzheimer Association. 2020 Alzheimer's disease facts and figures. Alzheimer's Dement. 2020.
  2. Alzheimer's disease international. World Alzheimer Report 2019. Prim Care Ment Heal Older People. 2019;311-29.
  3. C. Crdenas-Aguayo M del, C. Silva-Lucero M del, CortesOrtiz M, Jimnez-Ramos B, Gmez-Virgilio L, RamrezRodrguez G, et al. Physiological role of amyloid beta in neural cells: The cellular trophic activity. In: Heinbockel T, ed. Neurochemistry. IntechOpen. 2014. 4. Luna S, Cameron DJ, Ethell DW. Amyloid-β and APP deficiencies cause severe cerebrovascular defects: important work for an old villain. PLoS One. 2013 Sep 5;8(9). CrossRef PubMed PubMedCentral
  4. Soscia SJ, Kirby JE, Washicosky KJ, Tucker SM, Ingelsson M, Hyman B, et al. Alzheimer's disease-associated amyloid β-protein is an antimicrobial peptide. PLoS One. 2010 Mar 3;5(3):1-10. CrossRef PubMed PubMedCentral
  5. Bhadbhade A, Cheng DW. Amyloid precursor protein processing in Alzheimer's disease. Iran J Child Neurol. 2012;6(1):1-4.
  6. Wälti MA, Ravotti F, Arai H, Glabe CG, Wall JS, Böckmann A, et al. Atomic-resolution structure of a disease-relevant Aβ(1-42) amyloid fibril. Proc Natl Acad Sci USA. 2016 Aug 23;113(34):E4976-84. CrossRef PubMed PubMedCentral
  7. Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL. Natural oligomers of the Alzheimer amyloid-β protein induce reversible synapse loss by modulating an NMDA-type glutamate receptordependent signaling pathway. J Neurosci. 2007 Mar 14;27(11):2866-75. CrossRef PubMed PubMedCentral
  8. Puzzo D, Privitera L, Leznik E, Fà M, Staniszewski A, Palmeri A, Arancio O. Picomolar amyloid-β positively modulates synaptic plasticity and memory in hippocampus. J Neurosci. 2008;28(53):14537-45. CrossRef PubMed PubMedCentral
  9. Plant LD, Boyle JP, Smith IF, Peers C, Pearson HA. The production of amyloid β peptide is a critical requirement for the viability of central neurons. J Neurosci. 2003;23(13):5531-5. CrossRef PubMed PubMedCentral
  10. Cirrito JR, May PC, O'Dell MA, Taylor JW, Parsadanian M, Cramer JW, Audia JE, Nissen JS, Bales KR, Paul SM, DeMattos RB, Holtzman DM. In vivo assessment of brain interstitial fluid with microdialysis reveals plaqueassociated changes in amyloid-β metabolism and half-life. J Neurosci. 2003;23(26):8844-53. CrossRef PubMed PubMedCentral
  11. Pearson HA, Peers C. Physiological roles for amyloid β peptides. J Physiol. 2006 Aug;575(Part 1):5-10. CrossRef PubMed PubMedCentral
  12. Cuello AC. Intracellular and extracellular Aβ, a tale of two neuropathologies. Brain Pathol. 2006;15(1):66-71. CrossRef PubMed
  13. Walsh DM, Tseng BP, Rydel RE, Podlisny MB, Selkoe DJ. The oligomerization of amyloid β-protein begins intracellularly in cells derived from human brain. Biochemistry. 2000;39(35):10831-9. CrossRef PubMed
  14. Lane CA, Hardy J, Schott JM. Alzheimer's disease. Eur J Neurol. 2018;25(1):59-70. CrossRef PubMed
  15. Iwata N, Tsubuki S, Takaki Y, Watanabe K, Sekiguchi M, Hosoki E, et al. Identification of the major Aβ1- 42-degrading catabolic pathway in brain parenchyma: Suppression leads to biochemical and pathological deposition. Nat Med. 2000;6(2):143-50. CrossRef PubMed
  16. Glabe CC. Amyloid accumulation and pathogensis of Alzheimer's disease: significance of monomeric, oligomeric and fibrillar Abeta. Subcell Biochem. 2005;38:167-77. CrossRef PubMed
  17. Walsh DM, Klyubin I, Fadeeva J V., Rowan MJ, Selkoe DJ. Amyloid-β oligomers: Their production, toxicity and therapeutic inhibition. Biochem Soc Trans. 2002;30(4):552-7. CrossRef PubMed
  18. Selkoe DJ. Translating cell biology into therapeutic advances in Alzheimer's disease. Nature. 1999;399(June):A23-31. CrossRef PubMed
  19. Mikheytseva I.N. Molecular mechanisms of neurodegeneration in primary glaucoma pathogenesis, retinoneuroprotective action of melatonin. Tavricheskiy Med Vestn. 2012;231-4.
  20. Rubinsztein DC, Mariño G, Kroemer G. Autophagy and aging. Cell. 2011;146(5):682-95. CrossRef PubMed
  21. Madeo F, Tavernarakis N, Kroemer G. Can autophagy promote longevity? Nat Cell Biol. 2010;12(9):842-6. CrossRef PubMed
  22. Park D, Jeong H, Lee MN, Koh A, Kwon O, Yang YR, Noh J, Suh PG, Park H, Ryu SH. Resveratrol induces autophagy by directly inhibiting mTOR through ATP competition. Sci Rep. 2016;6:21772. CrossRef PubMed PubMedCentral
  23. Meiliana A, Dewi NM, Wijaya A. New insight in the molecular mechanisms of neurodegenerative disease. Indones Biomed J. 2018;10(1):16-34. CrossRef
  24. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The Hallmarks of aging longevity. Cell. 2013;153(6):1194-217. CrossRef PubMed PubMedCentral
  25. Scheibye-knudsen M, Fang EF, Croteau DL, Bohr VA. Protecting the mitochondrial powerhouse. trends Cell Biol., 2015;25(3):158-70. CrossRef PubMed PubMedCentral
  26. Kravenska Y, Nieznanska H, Nieznanski K, Lukyanetz E, Szewczyk A, Koprowski P. The monomers, oligomers, and fibrils of amyloid-β inhibit the activity of mitoBKCa channels by a membrane-mediated mechanism. Biochim Biophys Acta - Biomembr. 2020;1862(9):183337. CrossRef PubMed
  27. Kravenska EV, Chopovska VV Yavorskaya EN, Lukyanetz EA. The role of mitochondria in the developmenr of Alzheimer's disease. Tavricheskiy Med Biol Bull. 2012;15 (3/2):147-9.
  28. Tu Y, Chen C, Pan J, Xu J, Zhou ZG, Wang CY. The ubiquitin proteasome pathway (UPP) in the regulation of cell cycle control and DNA damage repair and its implication in tumorigenesis. Int J Clin Exp Pathol. 2012;5(8):726-38.
  29. Song S, Kim SY, Hong YM, Jo DG, Lee JY, Shim SM, Chung CW, Seo SJ, Yoo YJ, Koh JY, Lee MC, Yates AJ, Ichijo H, Jung YK. Essential role of E2-25K/ Hip-2 in mediating amyloid-β neurotoxicity. Mol Cell. 2003;12(3):553-63. CrossRef PubMed
  30. Aaron Ciechanover and PB. The Ubiquitin Proteasome System in Neurodegenerative Diseases: Sometimes the Chicken, Sometimes the Egg Review. Neuron. 2003;40(2):427-46. CrossRef
  31. Bertrand P. Tseng, Kim N. Green, Julie L. Chan, Mathew Blurton-Jones and FML. Aβ inhibits the proteasome and enhances amyloid and tauaccumulation. Neurobiol Aging. 2008;29(11):1607-18. CrossRef PubMed PubMedCentral
  32. Gadhave K, Bolshette N, Ahire A, Pardeshi R, Thakur K, Trandafir C, Istrate A, Ahmed S, Lahkar M, Muresanu DF, Balea M. The ubiquitin proteasomal system: a potential target for the management of Alzheimer's disease. J Cell Mol Med. 2016;20(7):1392-407. CrossRef PubMed PubMedCentral
  33. Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer's amyloid β-peptide. Nat Rev Mol Cell Biol. 2007;8(2):101-12. CrossRef PubMed
  34. Sipos E, Kurunczi A, Kasza Á, Horváth J, Felszeghy K, Laroche S, Toldi J, Párducz Á, Penke B, Penke Z. β-Amyloid pathology in the entorhinal cortex of rats induces memory deficits: Implications for Alzheimer's disease. Neuroscience. 2007;147(1):28-36. CrossRef PubMed
  35. Maurice T, Lockhart BP, Privat A. Amnesia induced in mice by centrally administered β-amyloid peptides involves cholinergic dysfunction. Brain Res. 1996;706(2):181-93. CrossRef Gaugler J, James B, Johnson T, Scholz K, Weuve J. 2016 Alzheimer's disease facts and figures. Alzheimer's Dement [Internet]. 2016;12(4):459-509. Available from: http:// dx.doi.org/10.1016/j.jalz.2016.03.001 CrossRef PubMed
  36. Garcia-Osta A, Alberini CM. Amyloid beta mediates memory formation. Learn Mem. 2009;16(4):267-72. CrossRef PubMed PubMedCentral
  37. Morley J, Farr S, Banks W, Johnson S, Yamada K, Xu L. A physiological role for amyloid beta protein: Enhancement of learning and memory. Nat Preced [Internet]. 2008 Jul 25 [cited 2020 Feb 24]; Available from: http://www.nature. com/articles/npre.2008.2119.1
  38. Morley JE, Farr SA, Nguyen AD, Xu F. What is the Physiological Function of Amyloid-Beta Protein? J Nutr Heal Aging. 2019 Mar 1;23(3):225-6. CrossRef PubMed
  39. Morley JE, Farr SA. Hormesis and amyloid-β protein: Physiology or pathology? J Alzheimer's Dis. 2012;29(3):487-92. CrossRef PubMed
  40. Morley JE, Farr SA. The role of amyloid-beta in the regulation of memory. Biochem Pharmacol [Internet]. 2014;88(4):479-85. Available from: http://dx.doi. org/10.1016/j.bcp.2013.12.018 CrossRef PubMed
  41. Peter T. Nelson, MD, PhD, Irina Alafuzoff, MD, PhD, Eileen H. Bigio, MD, Constantin Bouras, MD, Heiko Braak, MD, Nigel J. Cairns, PhD, FRCPath, Rudolph J. Castellani, MD, Barbara J. Crain, MD, PhD, Peter Davies, PhD, Kelly Del Tredici, MD, PhD, Charles Du P. Correlation of Alzheimer Disease Neuropathologic Changes With Cognitive Status: A Review of the Literature. J Neuropathol Exp Neurol. 2012;71(5):362-81. CrossRef PubMed PubMedCentral
  42. Tyshchenko YM, Lukyanetz EA. Effects of memantine on behavioral indices of rats in the open field. Neurophysiology. 2017;49(6):453-7. CrossRef
  43. Kruchenko ZA, Gorbachenko VA, Chereda IS, Lukyanetz EA. Effect of memantine on motor behavioral phenomena in rats of different ages. Neurophysiology. 2014;46(5):448-51. CrossRef
  44. Bergmann K, Tomlinson BE, Blessed G, Gibson PH, Perry RH. Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br Med J. 1978;2(6150):1457-9. CrossRef PubMed PubMedCentral
  45. Fleisher AS, Sowell BB, Taylor C, Gamst AC, Petersen RC, Thal LJ. Clinical predictors of progression to Alzheimer disease in amnestic mild cognitive impairment. Neurology. 2007;68(19):1588-95. CrossRef PubMed
  46. Van Dyck CH, Tariot PN, Meyers B, Malca Resnick E. A 24-week randomized, controlled trial of memantine in patients with moderate-to-severe Alzheimer disease. Alzheimer Dis Assoc Disord. 2007;21(2):136-43. CrossRef PubMed
  47. Crews L, Masliah E. Molecular mechanisms of neurodegeneration in Alzheimer's disease. Hum Mol Genet. 2010 Apr 22;19(R1):12-20. CrossRef PubMed PubMedCentral
  48. Rockenstein E, Adame A, Mante M, Moessler H, Windisch M, Masliah E. The neuroprotective effects of CerebrolysinTM in a transgenic model of Alzheimer's disease are associated with improved behavioral performance. J Neural Transm. 2003;110(11):1313-27. CrossRef PubMed
  49. Ringman J, Frautschy S, Cole G, Masterman D, Cummings J. A potential role of the curry spice curcumin in Alzheimers disease. Curr Alzheimer Res. 2005;2(2):131-6. CrossRef PubMed PubMedCentral
  50. Lipton S. The molecular basis of memantine action in Alzheimers disease and other neurologic disorders: Lowaffinity, uncompetitive antagonism. Curr Alzheimer Res. 2005;2(2):155-65. CrossRef PubMed
  51. Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T, Gerstein H, Yu GQ, Mucke L. Reducing endogenous tau ameliorates amyloid β-induced deficits in an Alzheimer's disease mouse model. Science (80- ). 2007 May 4;316(5825):750-4. CrossRef PubMed
  52. Andorfer C, Kress Y, Espinoza M, De Silva R, Tucker KL, Barde YA, Duff K, Davies P. Hyperphosphorylation and aggregation of tau in mice expressing normal human tau isoforms. J Neurochem. 2003;86(3):582-90. CrossRef PubMed
  53. Wuli W, Tsai ST, Chiou TW, Harn HJ. Human-induced pluripotent stem cells and herbal small-molecule drugs for treatment of Alzheimer's disease. Int J Mol Sci. 2020;21(4). CrossRef PubMed PubMedCentral

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.