Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2020; 66(6): 74-81


O.S. Panasiuk, А.I. Bondarenko

    O.O. Bogomoletz Institute of Physiology, NAS Ukraine, Kyiv, Ukraine


Omega-3 polyunsaturated fatty acids (PUFA) provide protection against myocardial damage in ischemia-reperfusion. However, the mechanisms that provide cardioprotection are not fully understood. In this study, we investigated the effect of docosahexaenoic acid (DHA), a member of omega -3 PUFA, on mitochondrial respiration parameters and the role of mitochondrial calcium-dependent potassium channels of large conductance (ВКСа) in the implementation of these effects. Using the patch-clamp method, it was shown that functional ВКСа channels are expressed in the inner mitochondrial membrane of cardiac cells and their activity increases with the addition of DHA. We investigated the role of mitochondrial ВКСа channels in the regulation of mitochondrial respiratory processes. In experiments with isolated mitochondria from rat hearts, we showed that DHA prevented an increase in the respiratory rate of mitochondria in the V4 state and a decrease in the respiratory control elicited by addition of 10 μM Ca2+. Qualitatively the same effect was caused by NS1619, the ВКСа opener. In the presence of 10 μM Ca2+, the ВКСа channel inhibitor paxilin (1 μM) prevented the protective effect of DHA and NS1619 on the parameters of respiratory control. We conclude that mitochondrial ВКСа channels are involved in the implementation of the effects of DHA on mitochondrial respiration.

Keywords: mitochondria; polyunsaturated fatty acids; potassium channels.


  1. Bjerregaard P, Dyerberg J. Mortality from ischaemic heart disease and cerebrovascular disease in Greenland. J Epidemiol. 1988.17:3. CrossRef PubMed
  2. Jasova M, Kancirova I, Waczulikova I, Ferko M. Mitochondria as a target of cardioprotection in models of preconditioning. J Bioenerg Biomembr. 2017.49:357-68. CrossRef PubMed
  3. Panasiuk O, Shysh A, Bondarenko A, Moibenko O. Omega-3 polyunsaturated fatty acid-enriched diet differentially protects two subpopulations of myocardial mitochondria against Ca2+-induced injury. Exp Clin Cardiol. 2013; 18:e60-e64.
  4. O'Rourke B. Evidence for mitochondrial K+ channels and their role in cardioprotection. Circ Res. 2004;94:420-32. CrossRef PubMed PubMedCentral
  5. Singh H, Stefani E, Ligia T. Intracellular BKCa (iBKCa) channels. J Physiol. 2012. 590. 23:5937-47. CrossRef PubMed PubMedCentral
  6. Frankenreiter S, Bednarczyk P, Kniess A. cGMPelevating compounds and ischemic conditioning provide cardioprotection against ischemia and reperfusion injury via cardiomyocyte-specific BK channels. Circulation. 2017;136(24):2337-55. CrossRef PubMed
  7. Bentzen B, Olesen SP, Rønn L. BK channel activators and their therapeutic perspectives. Front Physiol. 2014 Oct;9;5:389. CrossRef PubMed PubMedCentral
  8. Sagach V, Bondarenko A, Bazilyuk O, Kotsuruba A. Endothelial dysfunction: possible mechanisms and ways of correction. Exr Clin Cardiol. 2006;11(2):107.
  9. Frenoux JM, Prost ED, Belleville JL, Prost JL. A polyunsaturated fatty acid diet lowers blood pressure and improves antioxidant status in spontaneously hypertensive rats. J Nutr. 2001;131:39-45. CrossRef PubMed
  10. Farias JG, Carrasco-Pozo C, Carrasco Loza R, Sepulveda N, Alvarez P, Quezada M, Quinones J, Molina V, Castillo RL. Polyunsaturated fatty acid induces cardioprotection against ischemia-reperfusion through the inhibition of NF-kappaB and induction of Nrf2. Exp Biol Med. 2017;242:1104-14. CrossRef PubMed PubMedCentral
  11. Panasiuk O, Bondarenko A. Membrane cholesterol determines the stimulatory effect of omega-3 PUFA on BK channel activity. Pharmacologia. 2015;6:31-7. CrossRef
  12. Bondarenko OI. Study of calcium channels in the mitochondrial membrane of endothelial cells. Fiziol Zh. 2014;60(1):64-9. [Ukrainian]. CrossRef PubMed
  13. Chance B, Williams GR. The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem. 1956;17:65-134. CrossRef PubMed
  14. Heinen A, Camara AK, Aldakkak M. Mitochondrial Ca2+- induced K+ influx increases respiration and enhances ROS production while maintaining membrane potential. Am J Physiol Cell Physiol. 2007;292:C148-C56. CrossRef PubMed
  15. Murphy MP. How understanding the control of energy metabolism can help investigation of mitochondrial dysfunction, regulation and pharmacology. BBA. 2001;1504:1-11. CrossRef
  16. Pandya JD, Nukala VN, Sullivan PG. Concentration dependent effect of calcium on brain mitochondrial bioenergetics and oxidative stress parameters. Front Neuroenerget. 2013;5:10. CrossRef PubMed PubMedCentral
  17. O'Shea KM, Khairallah RJ, Sparagna GC. Dietary omega-3 fatty acids alter cardiac mitochondrial phospholipid composition and delay Ca2+-induced permeability transition. J Mol Cell Cardiol. 2009;47:819-27. CrossRef PubMed PubMedCentral
  18. Pepe S, Tsuchiya N, Lakatta EG. PUFA and aging modulate cardiac mitochondrial membrane lipid composition and Ca2+ activation of PDH. Am J Physiol. 1999;276:149-58. CrossRef PubMed
  19. Clarke AL, Petrou S, Walsh JV, Modulation of BKCa channel activity by fatty acids: structural requirements and mechanism of action. Am J Physiol Cell Physiol. 2002;283:1441-53. CrossRef PubMed

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.